868 research outputs found

    Super-resolution land cover mapping by deep learning

    Get PDF
    Super-resolution mapping (SRM) is a technique to estimate a fine spatial resolution land cover map from coarse spatial resolution fractional proportion images. SRM is often based explicitly on the use of a spatial pattern model that represents the land cover mosaic at the fine spatial resolution. Recently developed deep learning methods have considerable potential as an alternative approach for SRM, based on learning the spatial pattern of land cover from existing fine resolution data such as land cover maps. This letter proposes a deep learning-based SRM algorithm (DeepSRM). A deep convolutional neural network was first trained to estimate a fine resolution indicator image for each class from the coarse resolution fractional image, and all indicator maps were then combined to create the final fine resolution land cover map based on the maximal value strategy. The results of an experiment undertaken with simulated images show that DeepSRM was superior to conventional hard classification and a suite of popular SRM algorithms, yielding the most accurate land cover representation. Consequently, methods such as DeepSRM may help exploit the potential of remote sensing as a source of accurate land cover information

    Mapping annual forest cover by fusing PALSAR/PALSAR-2 and MODIS NDVI during 2007–2016

    Get PDF
    Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture Radar (PALSAR) HH and HV polarization data were used previously to produce annual, global 25 m forest maps between 2007 and 2010, and the latest global forest maps of 2015 and 2016 were produced by using the ALOS-2 PALSAR-2 data. However, annual 25 m spatial resolution forest maps during 2011–2014 are missing because of the gap in operation between ALOS and ALOS-2, preventing the construction of a continuous, fine resolution time-series dataset on the world's forests. In contrast, the MODerate Resolution Imaging Spectroradiometer (MODIS) NDVI images were available globally since 2000. This research developed a novel method to produce annual 25 m forest maps during 2007–2016 by fusing the fine spatial resolution, but asynchronous PALSAR/PALSAR-2 with coarse spatial resolution, but synchronous MODIS NDVI data, thus, filling the four-year gap in the ALOS and ALOS-2 time-series, as well as enhancing the existing mapping activity. The method was developed concentrating on two key objectives: 1) producing more accurate 25 m forest maps by integrating PALSAR/PALSAR-2 and MODIS NDVI data during 2007–2010 and 2015–2016; 2) reconstructing annual 25 m forest maps from time-series MODIS NDVI images during 2011–2014. Specifically, a decision tree classification was developed for forest mapping based on both the PALSAR/PALSAR-2 and MODIS NDVI data, and a new spatial-temporal super-resolution mapping was proposed to reconstruct the 25 m forest maps from time-series MODIS NDVI images. Three study sites including Paraguay, the USA and Russia were chosen, as they represent the world's three main forest types: tropical forest, temperate broadleaf and mixed forest, and boreal conifer forest, respectively. Compared with traditional methods, the proposed approach produced the most accurate continuous time-series of fine spatial resolution forest maps both visually and quantitatively. For the forest maps during 2007–2010 and 2015–2016, the results had greater overall accuracy values (>98%) than those of the original JAXA forest product. For the reconstructed 25 m forest maps during 2011–2014, the increases in classifications accuracy relative to three benchmark methods were statistically significant, and the overall accuracy values of the three study sites were almost universally >92%. The proposed approach, therefore, has great potential to support the production of annual 25 m forest maps by fusing PALSAR/PALSAR-2 and MODIS NDVI during 2007–2016

    Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review

    Get PDF
    Modern hyperspectral imaging systems produce huge datasets potentially conveying a great abundance of information; such a resource, however, poses many challenges in the analysis and interpretation of these data. Deep learning approaches certainly offer a great variety of opportunities for solving classical imaging tasks and also for approaching new stimulating problems in the spatial–spectral domain. This is fundamental in the driving sector of Remote Sensing where hyperspectral technology was born and has mostly developed, but it is perhaps even more true in the multitude of current and evolving application sectors that involve these imaging technologies. The present review develops on two fronts: on the one hand, it is aimed at domain professionals who want to have an updated overview on how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, we want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields other than Remote Sensing are the original contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends

    Reducing the impacts of intra-class spectral variability on the accuracy of soft classification and super-resolution mapping of shoreline

    Get PDF
    The main objective of this research is to assess the impact of intra-class spectral variation on the accuracy of soft classification and super-resolution mapping. The accuracy of both analyses was negatively related to the degree of intra-class spectral variation, but the effect could be reduced through use of spectral sub-classes. The latter is illustrated in mapping the shoreline at a sub-pixel scale from Landsat ETM+ data. Reducing the degree of intra-class spectral variation increased the accuracy of soft classification, with the correlation between predicted and actual class coverage rising from 0.87 to 0.94, and super-resolution mapping, with the RMSE in shoreline location decreasing from 41.13 m to 35.22 m

    A New Pansharpening Approach for Hyperspectral Images

    Get PDF
    We first briefly review recent papers for pansharpening of hyperspectral (HS) images. We then present a recent pansharpening approach called hybrid color mapping (HCM). A few variants of HCM are then summarized. Using two hyperspectral images, we illustrate the advantages of HCM by comparing HCM with 10 state-of-the-art algorithms

    Sparse Coding-Based Method Comparison for Land-Use Classification

    Get PDF
    Land-use classification utilize high-resolution remote sensing image. The image is utilized for improving the classification problem. Nonetheless, in other side, the problem becomes more challenging cause the image is too complex. We have to represent the image appropriately. On of the common method to deal with it is Bag of Visual Word (BOVW). The method needs a coding process to get the final data interpretation. There are many methods to do coding such as Hard Quantization Coding (HQ), Sparse Coding (SC), and Locality-constrained Linear Coding (LCC). However, that coding methods use a different assumption. Therefore, we have to compare the result of each coding method. The coding method affects classification accuracy. The best coding method will produce the better classification result. Dataset UC Merced consisted 21 classes is used in this research. The experiment result shows that LCC got better performance / accuracy than SC and HQ. LCC method got 86.48 % accuracy. Furthermore, LCC also got the best performance on various number of training data for each class
    • …
    corecore