2,612 research outputs found

    The Physical Basis for Anomalous Diffusion in Bed Load Transport

    Get PDF
    Recent studies have observed deviation from normal (Fickian) diffusion in sediment tracer dispersion that violates the assumption of statistical convergence to a Gaussian. Nikora et al. (2002) hypothesized that particle motion at short time scales is superdiffusive because of inertia, while long-time subdiffusion results from heavy-tailed rest durations between particle motions. Here we test this hypothesis with laboratory experiments that trace the motion of individual gravels under near-threshold intermittent bed load transport (0.027 \u3c Ď„* \u3c 0.087). Particle behavior consists of two independent states: a mobile phase, in which indeed we find superdiffusive behavior, and an immobile phase, in which gravels distrained from the fluid remain stationary for long durations. Correlated grain motion can account for some but not all of the superdiffusive behavior for the mobile phase; invoking heterogeneity of grain size provides a plausible explanation for the rest. Grains that become immobile appear to stay at rest until the bed scours down to an elevation that exposes them to the flow. The return time distribution for bed scour is similar to the distribution of rest durations, and both have power law tails. Results provide a physical basis for scaling regimes of anomalous dispersion and the time scales that separate these regimes

    Cooling in strongly correlated optical lattices: prospects and challenges

    Full text link
    Optical lattices have emerged as ideal simulators for Hubbard models of strongly correlated materials, such as the high-temperature superconducting cuprates. In optical lattice experiments, microscopic parameters such as the interaction strength between particles are well known and easily tunable. Unfortunately, this benefit of using optical lattices to study Hubbard models come with one clear disadvantage: the energy scales in atomic systems are typically nanoKelvin compared with Kelvin in solids, with a correspondingly miniscule temperature scale required to observe exotic phases such as d-wave superconductivity. The ultra-low temperatures necessary to reach the regime in which optical lattice simulation can have an impact-the domain in which our theoretical understanding fails-have been a barrier to progress in this field. To move forward, a concerted effort to develop new techniques for cooling and, by extension, techniques to measure even lower temperatures. This article will be devoted to discussing the concepts of cooling and thermometry, fundamental sources of heat in optical lattice experiments, and a review of proposed and implemented thermometry and cooling techniques.Comment: in review with Reports on Progress in Physic

    Advanced Techniques for Ground Penetrating Radar Imaging

    Get PDF
    Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives

    Image Restoration

    Get PDF
    This book represents a sample of recent contributions of researchers all around the world in the field of image restoration. The book consists of 15 chapters organized in three main sections (Theory, Applications, Interdisciplinarity). Topics cover some different aspects of the theory of image restoration, but this book is also an occasion to highlight some new topics of research related to the emergence of some original imaging devices. From this arise some real challenging problems related to image reconstruction/restoration that open the way to some new fundamental scientific questions closely related with the world we interact with
    • …
    corecore