10 research outputs found

    Deformable Beamsplitters: Enhancing Perception with Wide Field of View, Varifocal Augmented Reality Displays

    Get PDF
    An augmented reality head-mounted display with full environmental awareness could present data in new ways and provide a new type of experience, allowing seamless transitions between real life and virtual content. However, creating a light-weight, optical see-through display providing both focus support and wide field of view remains a challenge. This dissertation describes a new dynamic optical element, the deformable beamsplitter, and its applications for wide field of view, varifocal, augmented reality displays. Deformable beamsplitters combine a traditional deformable membrane mirror and a beamsplitter into a single element, allowing reflected light to be manipulated by the deforming membrane mirror, while transmitted light remains unchanged. This research enables both single element optical design and correct focus while maintaining a wide field of view, as demonstrated by the description and analysis of two prototype hardware display systems which incorporate deformable beamsplitters. As a user changes the depth of their gaze when looking through these displays, the focus of virtual content can quickly be altered to match the real world by simply modulating air pressure in a chamber behind the deformable beamsplitter; thus ameliorating vergence–accommodation conflict. Two user studies verify the display prototypes’ capabilities and show the potential of the display in enhancing human performance at quickly perceiving visual stimuli. This work shows that near-eye displays built with deformable beamsplitters allow for simple optical designs that enable wide field of view and comfortable viewing experiences with the potential to enhance user perception.Doctor of Philosoph

    TOWARDS EFFECTIVE DISPLAYS FOR VIRTUAL AND AUGMENTED REALITY

    Get PDF
    Virtual and augmented reality (VR and AR) are becoming increasingly accessible and useful nowadays. This dissertation focuses on several aspects of designing effective displays for VR and AR. Compared to conventional desktop displays, VR and AR displays can better engage the human peripheral vision. This provides an opportunity for more information to be perceived. To fully leverage the human visual system, we need to take into account how the human visual system perceives things differently in the periphery than in the fovea. By investigating the relationship of the perception time and eccentricity, we deduce a scaling function which facilitates content in the far periphery to be perceived as efficiently as in the central vision. AR overlays additional information on the real environment. This is useful in a number of fields, including surgery, where time-critical information is key. We present our medical AR system that visualizes the occluded catheter in the external ventricular drainage (EVD) procedure. We develop an accurate and efficient catheter tracking method that requires minimal changes to the existing medical equipment. The AR display projects a virtual image of the catheter overlaid on the occluded real catheter to depict its real-time position. Our system can make the risky EVD procedure much safer. Existing VR and AR displays support a limited number of focal distances, leading to vergence-accommodation conflict. Holographic displays can address this issue. In this dissertation, we explore the design and development of nanophotonic phased array (NPA) as a special class of holographic displays. NPAs have the advantage of being compact and support very high refresh rates. However, the use of the thermo-optic effect for phase modulation renders them susceptible to the thermal proximity effect. We study how the proximity effect impacts the images formed on NPAs. We then propose several novel algorithms to compensate for the thermal proximity effect on NPAs and compare their effectiveness and computational efficiency. Computer-generated holography (CGH) has traditionally focused on 2D images and 3D images in the form of meshes and point clouds. However, volumetric data can also benefit from CGH. One of the challenges in the use of volumetric data sources in CGH is the computational complexity needed to calculate the holograms of volumetric data. We propose a new method that achieves a significant speedup compared to existing holographic volume rendering methods

    Virtual Aesthetics and Ethical Communication: Towards Virtuous Reality Design

    Get PDF
    This thesis argues that ethics can and should be applied to Second Life avatar design and behavior. Second Life is a unique virtual reality due to its connection to the physical world primarily through financial devices. Users buy and sell virtual and physical goods over these networks; the avatar, it is argued, is the primary instrument for persuasion in these contexts. Avatars facilitate a virtual aesthetic that is primarily \u27natural.\u27 By creating aesthetic avatars, the developers of Second Life enable audiences to affectively associate with other \u27residents.\u27 Not only is the avatar designed for aesthetic appeal, but it enables users to move, act, and interact in an online environment--to vicariously experience the emotions that accompany those actions. In the real world, individuals\u27 actions have ethical consequences. Behavior in Second Life, it is argued, should be subject to ethics as determined by democratic communities of users

    Modeling the environment with egocentric vision systems

    Get PDF
    Cada vez más sistemas autónomos, ya sean robots o sistemas de asistencia, están presentes en nuestro día a día. Este tipo de sistemas interactúan y se relacionan con su entorno y para ello necesitan un modelo de dicho entorno. En función de las tareas que deben realizar, la información o el detalle necesario del modelo varía. Desde detallados modelos 3D para sistemas de navegación autónomos, a modelos semánticos que incluyen información importante para el usuario como el tipo de área o qué objetos están presentes. La creación de estos modelos se realiza a través de las lecturas de los distintos sensores disponibles en el sistema. Actualmente, gracias a su pequeño tamaño, bajo precio y la gran información que son capaces de capturar, las cámaras son sensores incluidos en todos los sistemas autónomos. El objetivo de esta tesis es el desarrollar y estudiar nuevos métodos para la creación de modelos del entorno a distintos niveles semánticos y con distintos niveles de precisión. Dos puntos importantes caracterizan el trabajo desarrollado en esta tesis: - El uso de cámaras con punto de vista egocéntrico o en primera persona ya sea en un robot o en un sistema portado por el usuario (wearable). En este tipo de sistemas, las cámaras son solidarias al sistema móvil sobre el que van montadas. En los últimos años han aparecido muchos sistemas de visión wearables, utilizados para multitud de aplicaciones, desde ocio hasta asistencia de personas. - El uso de sistemas de visión omnidireccional, que se distinguen por su gran campo de visión, incluyendo mucha más información en cada imagen que las cámara convencionales. Sin embargo plantean nuevas dificultades debido a distorsiones y modelos de proyección más complejos. Esta tesis estudia distintos tipos de modelos del entorno: - Modelos métricos: el objetivo de estos modelos es crear representaciones detalladas del entorno en las que localizar con precisión el sistema autónomo. Ésta tesis se centra en la adaptación de estos modelos al uso de visión omnidireccional, lo que permite capturar más información en cada imagen y mejorar los resultados en la localización. - Modelos topológicos: estos modelos estructuran el entorno en nodos conectados por arcos. Esta representación tiene menos precisión que la métrica, sin embargo, presenta un nivel de abstracción mayor y puede modelar el entorno con más riqueza. %, por ejemplo incluyendo el tipo de área de cada nodo, la localización de objetos importantes o el tipo de conexión entre los distintos nodos. Esta tesis se centra en la creación de modelos topológicos con información adicional sobre el tipo de área de cada nodo y conexión (pasillo, habitación, puertas, escaleras...). - Modelos semánticos: este trabajo también contribuye en la creación de nuevos modelos semánticos, más enfocados a la creación de modelos para aplicaciones en las que el sistema interactúa o asiste a una persona. Este tipo de modelos representan el entorno a través de conceptos cercanos a los usados por las personas. En particular, esta tesis desarrolla técnicas para obtener y propagar información semántica del entorno en secuencias de imágen

    Enhancing 3D Visual Odometry with Single-Camera Stereo Omnidirectional Systems

    Full text link
    We explore low-cost solutions for efficiently improving the 3D pose estimation problem of a single camera moving in an unfamiliar environment. The visual odometry (VO) task -- as it is called when using computer vision to estimate egomotion -- is of particular interest to mobile robots as well as humans with visual impairments. The payload capacity of small robots like micro-aerial vehicles (drones) requires the use of portable perception equipment, which is constrained by size, weight, energy consumption, and processing power. Using a single camera as the passive sensor for the VO task satisfies these requirements, and it motivates the proposed solutions presented in this thesis. To deliver the portability goal with a single off-the-shelf camera, we have taken two approaches: The first one, and the most extensively studied here, revolves around an unorthodox camera-mirrors configuration (catadioptrics) achieving a stereo omnidirectional system (SOS). The second approach relies on expanding the visual features from the scene into higher dimensionalities to track the pose of a conventional camera in a photogrammetric fashion. The first goal has many interdependent challenges, which we address as part of this thesis: SOS design, projection model, adequate calibration procedure, and application to VO. We show several practical advantages for the single-camera SOS due to its complete 360-degree stereo views, that other conventional 3D sensors lack due to their limited field of view. Since our omnidirectional stereo (omnistereo) views are captured by a single camera, a truly instantaneous pair of panoramic images is possible for 3D perception tasks. Finally, we address the VO problem as a direct multichannel tracking approach, which increases the pose estimation accuracy of the baseline method (i.e., using only grayscale or color information) under the photometric error minimization as the heart of the “direct” tracking algorithm. Currently, this solution has been tested on standard monocular cameras, but it could also be applied to an SOS. We believe the challenges that we attempted to solve have not been considered previously with the level of detail needed for successfully performing VO with a single camera as the ultimate goal in both real-life and simulated scenes

    Development and feasibility of a virtual reality group therapy for patients with depression.

    Get PDF
    PhD Theses.Background: Virtual reality (VR) could improve access and adherence to evidence-based psychological group therapies for people with depression. However, there is limited research into VR group therapy (VRGT) for depression. This thesis aimed to systematically develop a new evidence-based VRGT intervention for depression that can be delivered remotely and investigate its feasibility and acceptability. Methods: This thesis adopted a mixed methods design. The VRGT’s conceptual model was based on evidence synthesised from 4 studies: 1. Secondary data analysis of qualitative studies, which identified the facilitators and barriers to attending community mental health groups. 2. Scoping review, which identified how VR had been used in the treatment of depression 3. Systematic review, which developed a VR Cognitive Behavioural Therapy (CBT) framework 4. Qualitative study with 10 patients and 10 therapists, which identified the potential acceptability of the VRGT. Finally, the feasibility and acceptability of the intervention were assessed in a proof-of-concept study with 6 patients with depression. A process evaluation embedded within the study included interviews with all individuals who had received or delivered the intervention. Results: The intervention consisted of 8 sessions delivered once a week for 45 minutes. The intervention was feasible. The attendance rate for the intervention was 77.8%, with participants reporting improved symptoms of depression. The qualitative evidence suggested that participants were satisfied with the use of avatars and the immersive virtual environments and 5 dissatisfied with the technical elements of the intervention and the lack of face-to-face contact. Some participants were satisfied, and some were dissatisfied by the group dynamics and the treatment content they received. Conclusion: The VRGT intervention is acceptable and potentially beneficial to some patients with depression. Recommendations from this thesis have already been used by clinicians and software developers. Future research should assess the efficacy of VRGT
    corecore