22,827 research outputs found

    On Completeness of Cost Metrics and Meta-Search Algorithms in \$-Calculus

    Full text link
    In the paper we define three new complexity classes for Turing Machine undecidable problems inspired by the famous Cook/Levin's NP-complete complexity class for intractable problems. These are U-complete (Universal complete), D-complete (Diagonalization complete) and H-complete (Hypercomputation complete) classes. We started the population process of these new classes. We justify that some super-Turing models of computation, i.e., models going beyond Turing machines, are tremendously expressive and they allow to accept arbitrary languages over a given alphabet including those undecidable ones. We prove also that one of such super-Turing models of computation -- the \$-Calculus, designed as a tool for automatic problem solving and automatic programming, has also such tremendous expressiveness. We investigate also completeness of cost metrics and meta-search algorithms in \$-calculus

    On the possible Computational Power of the Human Mind

    Full text link
    The aim of this paper is to address the question: Can an artificial neural network (ANN) model be used as a possible characterization of the power of the human mind? We will discuss what might be the relationship between such a model and its natural counterpart. A possible characterization of the different power capabilities of the mind is suggested in terms of the information contained (in its computational complexity) or achievable by it. Such characterization takes advantage of recent results based on natural neural networks (NNN) and the computational power of arbitrary artificial neural networks (ANN). The possible acceptance of neural networks as the model of the human mind's operation makes the aforementioned quite relevant.Comment: Complexity, Science and Society Conference, 2005, University of Liverpool, UK. 23 page

    Proof of Church's Thesis

    Full text link
    We prove that if our calculating capability is that of a universal Turing machine with a finite tape, then Church's thesis is true. This way we accomplish Post (1936) program.Comment: 6 page
    corecore