22 research outputs found

    Sun effects in 2D aperture synthesis radiometry imaging and their cancellation

    Get PDF
    The Microwave Imaging Radiometer by Aperture Synthesis (MIRAS) is the single payload of the European Space Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) Earth Explorer Opportunity mission. MIRAS will be the first two-dimensional aperture synthesis radiometer for earth observation. Two-dimensional aperture synthesis radiometers can generate brightness temperature images by a Fourier synthesis process without mechanical antenna steering. To do so and have the necessary wide swath for earth observation, the array is formed by small and low directive antennas, which do not attenuate enough bright noise sources that may interfere with the measurements. This study analyzes the impact of the radio-frequency emission from the sun in the SMOS mission, reviews the basic image reconstruction algorithms, and proposes a technique to minimize sun effects.Postprint (published version

    A review of RFI mitigation techniques in microwave radiometry

    Get PDF
    Radio frequency interference (RFI) is a well-known problem in microwave radiometry (MWR). Any undesired signal overlapping the MWR protected frequency bands introduces a bias in the measurements, which can corrupt the retrieved geophysical parameters. This paper presents a literature review of RFI detection and mitigation techniques for microwave radiometry from space. The reviewed techniques are divided between real aperture and aperture synthesis. A discussion and assessment of the application of RFI mitigation techniques is presented for each type of radiometer.Peer ReviewedPostprint (published version

    Nodal sampling: a new image reconstruction algorithm for SMOS

    Get PDF
    Soil moisture and ocean salinity (SMOS) brightness temperature (TB) images and calibrated visibilities are related by the so-called G -matrix. Due to the incomplete sampling at some spatial frequencies, sharp transitions in the TB scenes generate a Gibbs-like contamination ringing and spread sidelobes. In the current SMOS image reconstruction strategy, a Blackman window is applied to the Fourier components of the TBs to diminish the amplitude of artifacts such as ripples, as well as other Gibbs -like effects. In this paper, a novel image reconstruction algorithm focused on the reduction of Gibbs -like contamination in TB images is proposed. It is based on sampling the TB images at the nodal points, that is, at those points at which the oscillating interference causes the minimum distortion to the geophysical signal. Results show a significant reduction of ripples and sidelobes in strongly radio-frequency interference contaminated images. This technique has been thoroughly validated using snapshots over the ocean, by comparing TBs reconstructed in the standard way or using the nodal sampling (NS) with modeled TBs. Tests have revealed that the standard deviation of the difference between the measurement and the model is reduced around 1 K over clean and stable zones when using NS technique with respect to the SMOS image reconstruction baseline. The reduction is approximately 0.7 K when considering the global ocean. This represents a crucial improvement in TB quality, which will translate in an enhancement of the retrieved geophysical parameters, particularly the sea surface salinity.Peer ReviewedPostprint (author's final draft

    RFI detection and mitigation for advanced correlators in interferometric radiometers

    Get PDF
    This work presents the first RFI detection and mitigation algorithm for the interferometric radiometers that will be implemented in its correlator unit. The algorithm operates in the time and frequency domains, applying polarimetric and statistical tests in both domains, and exhibiting a tunable and arbitrary low probability of false alarm. It is scalable to a configurable number of receivers, and it is optimized in terms of quantization bits and the implementation of the cross-correlations in the time or frequency domains for hardware resource saving. New features of this algorithm are the computation of the Stokes parameters per frequency bin in the Short-Time Fourier Transform and a new parameter called Polarimetric Kurtosis. If RFI is detected in one domain or in both, it is removed using the calculated blanking masks. The optimum algorithm parameters are computed, such as length of the FFTs, the threshold selection for a given probability of false alarm, and the selection of the blanking masks. Last, an important result refers to the application of Parseval’s theorem for the computation of the cross-correlations in the frequency domain, instead of in the time domain, which is more efficient and leads to smaller errors even when using moderate quantization levels. The algorithm has been developed in the framework of the ESA’s technology preparation for a potential L-band radiometer mission beyond SMOS. However, it is also applicable to (polarimetric) real aperture radiometers, and its performance would improve if more than one bit is used in the signal quantization.This research was funded by ESA, grant number ITT AO9359, by project SPOT: Sensing with Pioneering Opportunistic Techniques grant RTI2018-099008-B-C21/AEI/10.13039/501100011033, and the grant for recruitment of early stage research staff of the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) Generalitat de Catalunya, Spain (FISDUR2020/105).Peer ReviewedPostprint (published version

    SMOS instrument performance and calibration after six years in orbit

    Get PDF
    ESA's Soil Moisture and Ocean Salinity (SMOS) mission, launched 2-Nov-2009, has been in orbit for over 6 years, and its Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) in two dimensions keeps working well. The calibration strategy remains overall as established after the commissioning phase, with a few improvements. The data for this whole period has been reprocessed with a new fully polarimetric version of the Level-1 processor which includes a refined calibration schema for the antenna losses. This reprocessing has allowed the assessment of an improved performance benchmark. An overview of the results and the progress achieved in both calibration and image reconstruction is presented in this contribution.Peer ReviewedPostprint (author's final draft

    Earth remote sensing with SMOS, Aquarius and SMAP missions

    Get PDF
    The first three of a series of new generation satellites operating at L-band microwave frequencies have been launch in the last decade. L-band is particularly sensitive to the presence of water content in the scene under observation, being considered the optimal bandwidth for measuring the Earth's global surface soil moisture (SM) over land and sea surface salinity (SSS) over oceans. Monitoring these two essential climate variables is needed to further improve our understanding of the Earth's water and energy cycles. Additionally, remote sensing at L-band has been proved useful for monitoring the stability in ice sheets and measuring sea ice thickness. The ESA's Soil Moisture and Ocean Salinity (SMOS, 2009-2017) is the first mission specifically launched to monitor SM and SSS. It carries on-board a novel synthetic aperture radiometer with multi-angular and full-polarization capabilities. NASA's Aquarius (2011-2015) was the second mission, devoted to SSS monitoring with a combined real aperture radiometer/scatterometer system that allows correcting for sea surface roughness. NASA's Soil Moisture Active Passive (SMAP, 2015-2018) is the second mission dedicated to measure SM. It carries on-board a real aperture full-polarimetric radiometer and a synthetic aperture radar (SAR) for enhanced spatial resolution and freeze/thaw detection. This Ph.D. Thesis is focused on analyzing the geophysical information that can be obtained from L-band SMOS, Aquarius and SMAP observations. The research activities are structured as follows: -Inter-comparison of radiometer brightness temperatures at selected targets. A novel methodology to measure the consistency between SMOS and Aquarius radiometric data over the entire dynamic range of observations (land, ice and ocean) is proposed. It allows detecting spatial/temporal differences or biases without latitudinal limitations neither cross-overs. This is a necessary step to combine observations from different instruments in a long term dataset for environmental, meteorological, hydrological or climatological studies. -Ice thickness effects on passive remote sensing of Antarctic continental ice. The relationship between Antarctic ice thickness spatial variations and changes detected by SMOS and Aquarius measurements is explored. The emissivity of Antarctica is analyzed to disentangle the role of the geophysical contributions (snow layers at different depths and subglacial lakes) to the observed signal. The stability of the L-band signal in the East Antarctic Plateau, calibration/validation site for microwave satellite missions, is assessed. -Microwave/optical synergy for multi-scale soil moisture sensing. The relationship of SM and land surface temperature (LST) dynamics is evaluated to better understand the fundamental SM-LST link through evapotranspiration and thermal inertia physical processes. A new approach to measure the critical soil moisture from time-series of spaceborne SM and LST is proposed. The synergistic use of SMOS SM and remotely sensed LST for refining SM disaggregation algorithms is also analyzed. -Comparison of passive and active microwave vegetation parameters. Recent research has shown that microwave vegetation opacity, sensitive to biomass and water content, and albedo, related to canopy structure, can be retrieved from passive L-band observations. The relationships between these two parameters and radar-derived vegetation descriptors have been explored using airborne observations from the SMAP Validation Experiment 2012 (SMAPVEX12). The obtained relations could allow for improved SM retrievals in active-passive systems, and also to estimate the vegetation properties at high resolution using SAR observations. The Ph.D. Thesis has been developed within the activities of the Barcelona Expert Centre (BEC). The presented results contribute to the use of L-band remote sensing in different scientific disciplines such as climate, cryosphere, hydrology and ecology.Els primers tres d'una sèrie de satèl·lits de nova generació funcionant a la banda L han sigut llançats a l'última dècada. La banda L es molt sensible a la presència d'aigua a l'escena observada, sent considerada òptima per mesurar la humitat del sòl (SM) i la salinitat del mar (SSS) de manera global a la superfície de la Terra. Monitoritzar aquestes dues variables climàtiques essencials es necessari per millorar el nostre coneixement dels cicles de l'aigua i l'energia. La teledetecció a banda L també ha sigut útil per monitoritzar l'estabilitat de les capes de gel i mesurar el gruix de gel marí. La missió Soil Moisture and Ocean Salinity (SMOS, 2009-2017) de l'ESA és la primera específicament llançada per monitoritzar SM i SSS. Porta un nou radiòmetre d'apertura sintètica amb capacitat multiangular i polarització completa. La missió Aquarius (2011-2015) de la NASA va ser la segona, dedicada a monitoritzar SSS amb un sistema de radiòmetre/escateròmetre d’apertura real que permet corregir la rugositat de la superfície del mar. La missió Soil Moisture Active Passive (SMAP, 2015-2018) de la NASA és la segona dedicada a mesurar SM. Porta un radiòmetre d'apertura real i polarització completa i un radar d'apertura sintètica (SAR) per una millor resolució espaial i detecció de congelació/descongelació. Aquesta tesi està enfocada en analitzar la informació geofísica que pot obtenir-se de les observacions a banda L d'SMOS, Aquarius i SMAP. La seva investigació està estructurada com: -Intercomparació de temperatures de brillantor en zones seleccionades. Es proposa un nou mètode per mesurar la consistència entre les dades radiomètriques d'SMOS i Aquarius sobre el rang dinàmic complet d'observacions (terra, gel, oceà). Això permet detectar diferències espaials/temporals o biaixos sense limitacions latitudinals ni creuaments. Aquest pas es necessari per combinar observacions de diferents instruments en un llarg conjunt de dades per estudis mediambientals, hidrològics o climatològics. -Efecte de gruix de gel en teledetecció de gel continental a l'Antàrtida. S'explora la relació entre les variacions espaials del gruix de gel antàrtic i els canvis detectats a les mesures d'SMOS i Aquarius. L'emissivitat de l'Antàrtida es analitzada per discernir el rol de les contribucions geofísiques (capes de gel a diferents profunditats i llacs subglacials) al senyal observat. S'avalua l'estabilitat del senyal a banda L sobre la zona est de l'altiplà antàrtic, lloc per calibratge/validació de satèl·lits de microones. -Sinèrgia de microones/òptic per teledetecció de SM multiescala. S'avalua la correlació entre la SM i la temperatura de la superfície del sòl (LST) per entendre millor la relació SM-LST a través de processos físics d'evapotranspiració i inèrcia tèrmica. Es proposa un nou mètode per mesurar la humitat crítica utilitzant sèries temporals de SM i LST de satèl·lit. S'analitza l'ús de la SM de SMOS amb la LST de teledetecció per refinar algorismes de desagregació de SM. -Comparació de paràmetres passius i actius de microones relatius a la vegetació. Recent investigació ha mostrat que l'opacitat, sensible a la biomassa i el contingut d'aigua, i l'albedo, relacionat amb l'estructura, poden ser recuperats d'observacions passives a banda L. S'exploren les relacions entre aquests dos paràmetres i estimadors de vegetació derivats de radar utilitzant les observacions d'avió de l'experiment de validació d'SMAP 2012 (SMAPVEX12). Les relacions obtingudes podrien permetre millors recuperacions de SM en sistemes actius/passius i estimar les propietats de la vegetació a alta resolució utilitzant mesures de SAR. La tesi s'ha desenvolupat dins les activitats del Barcelona Expert Centre (BEC). Els resultats presentats contribueixen a l'ús de la banda L a diferents disciplines científiques com la climatologia, la criosfera, la hidrologia i l'ecologia

    Optimisation de la reconstruction d'image pour SMOS et SMOS-NEXT

    Get PDF
    Dans le cadre général de l'étude du climat, du cycle de l'eau et de la gestion des ressources en eau, le satellite SMOS (Soil Moisture and Ocean Salinity) a été lancé par l'agence spatiale européenne (ESA) en Novembre 2009 pour fournir des cartes globales d'humidité des sols et de salinité des surfaces océaniques. Les mesures du satellite sont obtenues par un radiomètre interférométrique opérant dans la bande passive 1400-1427 MHz (bande L des micro-ondes). Toutefois, dès les premières mesures de l'instrument, de nombreuses Interférences en Radio Fréquence (RFI) ont été observées, malgré les recommandations de l'Union Internationale des Télécommunications (ITU) qui protègent cette bande pour les applications scientifiques. La dégradation de données à cause des interférences est significative et au niveau international des efforts sont fait par l'ESA et les différentes agences nationales pour l'identification et l'extinction de ces émetteurs. D'un point de vue scientifique l'intérêt porte sur le développement de techniques pour la détection, la localisation au sol des sources d'interférences ainsi que pour la correction de leurs signaux dans les donnés SMOS ; différents objectifs ont donc été poursuivis et ont mené à la définition de différents approches présentées dans cette contribution. En effet la solution idéale serait de corriger l'impact de ces interférences sur les données, en créant synthétiquement des signaux égaux et de signe opposé et d'en tenir compte dans la chaîne de traitement des données. Un outil a donc été développé qui, en utilisant des connaissances a priori sur la scène observée issues des modèles météorologiques, permet de simuler la scène vue par l'instrument. A partir de cette information et des visibilités entre les antennes de l'interféromètre, il est possible de détecter et de décrire précisément ces interférences et donc d'en déduire le signal à soustraire. Bien que l'évaluation des performances d'un algorithme de correction des RFI pour SMOS ne soit pas facile puisqu'elle doit être faite indirectement, des méthodes avec ce but sont proposées et montrent des résultats généralement positifs pour l'algorithme développé. Cependant la difficulté d'évaluer l'impact de la correction à grande échelle, ainsi que pour l'incertitude qui est nécessairement introduite lors de l'application d'un signal synthétique aux données et afin d'éviter une utilisation naïve des résultats de correction, aujourd'hui on écarte l'hypothèse d'une application opérationnelle d'un algorithme de correction. Un produit intermédiaire a alors été développé, par une approche similaire, avec l'objectif de fournir des indications sur l'impact des RFI sur chaque point de chaque image selon des seuils prédéfinis. Un autre objectif a été de fournir un outil en mesure de caractériser rapidement les sources (position au sol, puissance, position dans le champ de vue) pour une zone géographique. Cette méthode utilise les composantes de Fourier de la scène vue par l'instrument pour obtenir une distribution de températures de brillance, dans laquelle les RFI apparaissent comme des points chauds. L'algorithme rapide de caractérisation des sources s'est révélé précis, fiable et robuste, et il pourrait être utilisé pour la définition de bases de données sur les RFI ou pour le suivi de celles-ci à l'échelle locale ou globale. Les résultats de cette méthode ont fournit un jeu de données privilégié pour l'étude des performances de l'instrument et ça a permit de mettre en évidence des potentielles erreurs systématiques ainsi que des variations saisonnières des résultats. Toutes mission spatiale ayant une vie limitée à quelques années, dans un deuxième temps on s'est intéressé à la continuité des mesures des mêmes variables géophysiques, avec le projet de mission SMOS-NEXT. Pour améliorer la qualité des mesures cette mission se propose d'implémenter une technique d'interférométrie novatrice : la synthèse d'ouverture spatio-temporelle, dont le principe est de corréler les mesures entre antennes en positions différentes et à des instants différents, dans les limites de cohérence liées à la bande spectrale. Suite à des études théoriques, une expérience a été faite en utilisant le radiotélescope de Nançay. Dans le cadre de la thèse les données de cette expérience ont été analysées. Bien que l'étude n'ait pas permit de conclure sur la validité du principe, plusieurs difficultés ont été mises en évidence et ce retour d'expérience sera utile lors de la prochaine campagne de mesure prévue.The Soil Moisture and Ocean Salinity (SMOS) satellite was launched by the European Space Agency (ESA) in November 2009 to allow a better understanding of Earth's climate, the water cycle and the availability of water resources at the global scale, by providing global maps of soil moisture and ocean salinity. SMOS' payload, an interferometric radiometer, measures Earth's natural radiation in the protected 1400-1427 MHz band (microwave, L-band). However, since launch the presence of numerous Radio-Frequency Interferences (RFI) has been clearly observed, despite the International Telecommunication Union (ITU) recommendations to preserve this band for scientific use. The pollution created by these artificial signals leads to a significant loss of data and a common effort of ESA and the national authorities is necessary in order to identify and switch off the emitters. From a scientific point of view we focus on the development of algorithms for the detection of RFI, their localization on the ground and the mitigation of the signals they introduce to the SMOS data. These objectives have led to different approaches that are proposed in this contribution. The ideal solution would consist in mitigating the interference signals by creating synthetic signals corresponding to the interferences and subtract them from the actual measurements. For this purpose, an algorithm was developed which makes use of a priori information on the natural scene provided by meteorological models. Accounting for this information, it is possible to retrieve an accurate description of the RFI from the visibilities between antennas, and therefore create the corresponding signal. Even though assessing the performances of a mitigation algorithm for SMOS is not straightforward as it has to be done indirectly, different methods are proposed and they all show a general improvement of the data for this particular algorithm. Nevertheless due to the complexity of assessing the performances at the global scale, and the uncertainty inevitably introduced along with the synthetic signal, and to avoid a naive use of the mitigated data by the end user, for the time being an operational implementation of mitigation algorithms is not foreseen. Instead, an intermediate solution is proposed which consists of estimating the RFI contamination for a given snapshot, and then creating a map of the regions that are contaminated to less than a certain (or several) threshold(s). Another goal has been to allow the characterization of RFI (location on the ground, power emitted, position in the field of view) within a specified geographic zone in a short time. This approach uses the Fourier components of the observed scene to evaluate the brightness temperature spatial distribution in which the RFIs are represented as "hot spots". This algorithm has proven reliable, robust and precise, so that it can be used for the creation of RFI databases and monitoring of the RFI contamination at the local and global scale. Such databases were in fact created and used to highlight systematic errors of the instrument and seasonal variation of the localization results. The second main research topic has been to investigate the principle of SMOS-NEXT, a prospective mission that aims at assuring the continuity of space-borne soil moisture and ocean salinity measurements in the future with significantly improved spatial resolution of the retrievals. In order to achieve the latter this project intends to implement a groundbreaking interferometric approach called the spatio-temporal aperture synthesis. This technique consists in correlating the signals received at antennas in different places at different times, within the coherence limits imposed by the bandwidth. To prove the feasibility of this technique, a measurement campaign was carried out at the radio-telescope in Nançay, France. Even though the analysis of the experimental data has not allowed concluding on the validity of the measurement principle, a series of difficulties have been highlighted and the thus gained knowledge constitutes a valuable base for the foreseen second measurement campaign

    Étude des interférences sur les mesures micro-ondes passives en bande L à l’aide de radiomètres au sol et aéroportés

    Get PDF
    Certaines données satellitaires ne sont pas utilisées à cause des acquisitions bruitées qui ne reflètent pas les distributions des grandeurs géophysiques du sol, telle que l’humidité du sol. La cause primordiale dans les micro-ondes passives vient des interférences radio fréquence (RFI). Ainsi, les températures apparentes mesurées par un satellite comme SMOS par exemple atteignent souvent des valeurs qui conduisent à des échecs d’inversion de l’humidité du sol. L’objectif de notre projet est d’étudier le phénomène des RFI à petite échelle, son impact sur les micro-ondes passives en bande L à partir des mesures au sol réalisées à l’aide de radiomètres. Une fois l’impact caractérisé de manière rigoureuse, une méthode de filtrage adaptatif a été développée pour corriger les effets. Le projet est composé de trois parties principales. La mise en place d’une expérimentation est réalisée afin de faire des mesures au sol à l’aide de deux radiomètres en bande L. Les mesures sont faites dans des conditions variables et plusieurs scénarios ont été considérés. Ensuite, les données sont collectées et analysées. Cette phase a abouti au développement d’un filtre qui permet d’atténuer l’effet des RFI sur les températures de brillance bruitées. Enfin, le filtre proposé dans le projet a été appliqué sur des données aéroportées en bande L prises sur le site Boreal Ecosystem Research and Monitoring Sites (BERMS) en Saskatchewan. L’expérimentation s’est déroulée à la station SIRENE de l’Université de Sherbrooke. Les instruments ont été mis en place et les radiomètres ont été calibrés en premier lieu pour s’assurer de la fiabilité des mesures. L’émetteur a servi comme une source d’interférence pour les radiomètres. Il était placé à des positions différentes vis-à-vis de ces derniers, et émettait à des puissances variables. Les différents scénarios considérés étaient utiles pour étudier l’effet de la position de la source RFI, ainsi que l’effet de la puissance émise par celle-là sur les températures mesurées par les radiomètres. Pour les mesures, nous avons utilisé un radiomètre multi-bandes qui nous a permis d’étudier l’impact de la bande passante sur les RFI. L’analyse et le traitement des données prises ont conduit au développement d’un filtre coupe-bande permettant de corriger les températures bruitées lorsque les caractéristiques du bruit sont connues. Ce filtre a été appliqué sur des données aéroportées bruitées. Le bruit a pu être atténué pour les températures en polarisation V. Les résultats de l’application du filtre sont satisfaisants dans l’ensemble malgré le volume important de données bruitées sur la zone d’étude. En ce qui concerne les données de la polarisation H, elles n’ont pu être corrigées, car elles étaient presque entièrement bruitées. Le mémoire porte sur une expérimentation originale, car les expériences du genre sont très rares dans la littérature. L’étude s’appuie sur deux radiomètres en bande L, ce qui est très particulier, compte tenu de la rareté de ces instruments

    Automated proximal sensing for estimation of the bidirectional reflectance distribution function in a Mediterranean tree-grass ecosystem

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2015-2016Los sistemas automáticos de proximal sensing permiten adquirir información espectral de las cubiertas terrestres elevada frecuencia temporal, que puede relacionarse con observaciones remotas o de otros tipos de sensores como los sistemas de eddy covariance. Si bien inicialmente los sistemas automáticos empleaban sensores multi-banda, en los últimos años se ha incrementado el uso de sensores hiperespectrales. Si bien estos sensores ofrecen información redundante y de alta resolución espectral, las mediciones están sujetas a múltiples fuentes de incertidumbre; tanto instrumentales (dependencias de la temperatura o el nivel de señal) como direccionales (dependencia de la geometría de observación e iluminación). Las dependencias instrumentales pueden ser minimizadas, por ejemplo, controlando la temperatura del instrumento o el nivel de señal registrado. En otros casos, es necesario parametrizar y emplear modelos para corregir los datos. En la presente tesis doctoral los capítulos 1 al 3 presentan la caracterización completa de un espectrómetro de campo instalado en un sistema automático. Los capítulos 1 y 2 analizan las fuentes de no linealidad en este instrumento, una de las cuales no había sido anteriormente descrita en este tipo de instrumentos. El tercer capítulo muestra el conjunto completo de modelos de corrección de los efectos instrumentales y la cadena de procesado correspondiente. Por otro lado, los sistemas automáticos se enfrentan a efectos direccionales ya que adquieren mediciones continuamente durante el ciclo solar diario y bajo cualquier condición de iluminación. Esto maximiza los rangos de los ángulos de iluminación y también de la fracción difusa de la irradiancia. Esta variabilidad de condiciones de iluminación, combinada con una variación de los ángulos de observación permite obtener la información necesaria para caracterizar las respuestas direccionales de la cubierta observada. Algunos sistemas automáticos multi-angulares ya han sido empleados para realizar esta caracterización mediante la estimación de la Función de Distribución de Reflectividad Bidireccional (BRDF) en ecosistemas homogéneos. Sin embargo, esto no se ha conseguido aún en áreas heterogéneas, como es el caso de los ecosistemas tree-grass o de sabana. Así mismo, los trabajos previos no han considerado los efectos de la radiación difusa en el estudio del BRDF. En el capítulo 4 proponemos una metodología que permite desmezclar y caracterizar simultáneamente la función de distribución de reflectividad hemisférica-direccional de las dos cubiertas de vegetación presentes en el ecosistema, pasto y arbolado. También se analizan los efectos de las diferentes características del método. Finalmente, los resultados se escalan y se comparan con productos globales de satélite como el producto BRDF de MODIS. La conclusión obtenida es que se requieren más esfuerzos en el desarrollo y caracterización de sensores hiperespectrales instalados en sistemas automáticos de campo. Estos sistemas deberían adoptar configuraciones multi-angulares de modo que puedan caracterizarse las respuestas direccionales. Para ello, será necesario considerar los efectos de la radiación difusa; y en algunos casos también la heterogeneidad de la escena
    corecore