14,734 research outputs found

    Asymptotic results for sums and extremes

    Full text link
    The term moderate deviations is often used in the literature to mean a class of large deviation principles that, in some sense, fills the gap between a convergence in probability of some random variables to a constant and a weak convergence to a centered Gaussian distribution (when such random variables are properly centered and rescaled). We talk about noncentral moderate deviations when the weak convergence is towards a non-Gaussian distribution. In this paper, we prove a noncentral moderate deviation result for the bivariate sequence of sums and maxima of i.i.d. random variables bounded from above. We also prove a result where the random variables are not bounded from above, and the maxima are suitably normalized. Finally, we prove a moderate deviation result for sums of partial minima of i.i.d. exponential random variables.Comment: 1

    Phase separation of a multiple occupancy lattice gas

    Full text link
    A binary lattice gas model that allows for multiple occupancy of lattice sites, inspired by recent coarse-grained descriptions of solutions of interacting polymers, is investigated by combining the steepest descent approximation with an exploration of the multidimensional energy landscape, and by Gibbs ensemble Monte Carlo simulations. The one-component version of the model, involving on site and nearest neighbour interactions, is shown to exhibit microphase separation into two sub-lattices with different mean occupation numbers. The symmetric two-component version of the multiple occupancy lattice gas is shown to exhibit a demixing transition into two phases above a critical mean occupation number.Comment: submitted to Journal of Physics

    Spectra: Robust Estimation of Distribution Functions in Networks

    Get PDF
    Distributed aggregation allows the derivation of a given global aggregate property from many individual local values in nodes of an interconnected network system. Simple aggregates such as minima/maxima, counts, sums and averages have been thoroughly studied in the past and are important tools for distributed algorithms and network coordination. Nonetheless, this kind of aggregates may not be comprehensive enough to characterize biased data distributions or when in presence of outliers, making the case for richer estimates of the values on the network. This work presents Spectra, a distributed algorithm for the estimation of distribution functions over large scale networks. The estimate is available at all nodes and the technique depicts important properties, namely: robust when exposed to high levels of message loss, fast convergence speed and fine precision in the estimate. It can also dynamically cope with changes of the sampled local property, not requiring algorithm restarts, and is highly resilient to node churn. The proposed approach is experimentally evaluated and contrasted to a competing state of the art distribution aggregation technique.Comment: Full version of the paper published at 12th IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS), Stockholm (Sweden), June 201

    Discrete structure of ultrathin dielectric films and their surface optical properties

    Get PDF
    The boundary problem of linear classical optics about the interaction of electromagnetic radiation with a thin dielectric film has been solved under explicit consideration of its discrete structure. The main attention has been paid to the investigation of the near-zone optical response of dielectrics. The laws of reflection and refraction for discrete structures in the case of a regular atomic distribution are studied and the structure of evanescent harmonics induced by an external plane wave near the surface is investigated in details. It is shown by means of analytical and numerical calculations that due to the existence of the evanescent harmonics the laws of reflection and refraction at the distances from the surface less than two interatomic distances are principally different from the Fresnel laws. From the practical point of view the results of this work might be useful for the near-field optical microscopy of ultrahigh resolution.Comment: 25 pages, 16 figures, LaTeX2.09, to be published in Phys.Rev.

    Magnetic moment of an electron gas on the surface of constant negative curvature

    Full text link
    The magnetic moment of an electron gas on the surface of constant negative curvature is investigated. It is shown that the surface curvature leads to the appearance of the region of the monotonic dependence M(B)M(B) at low magnetic fields. At high magnetic fields, the dependence of the magnetic moment on a magnetic field is the oscillating one. The effect of the surface curvature is to increase the region of the monotonic dependence of the magnetic moment and to break the periodicity of oscillations of the magnetic moment as a function of an inverse magnetic field.Comment: 4 pages, 1 figur
    • …
    corecore