5,298 research outputs found

    Hydrogenic states of monopoles in diluted quantum spin ice

    Full text link
    We consider the effect of adding quantum dynamics to a classical topological spin liquid, with particular view to how best to detect its presence in experiment. For the Coulomb phase of spin ice, we find quantum effects to be most visible in the gauge-charged monopole excitations. In the presence of weak dilution with nonmagnetic ions we find a particularly crisp phenomenon, namely the emergence of hydrogenic excited states in which a magnetic monopole is bound to a vacancy at various distances. Via a mapping to an analytically tractable single particle problem on the Bethe lattice, we obtain an approximate expression for the dynamic neutron scattering structure factor.Comment: 4 pages, 4 figures; supplemental material: 3 pages, 2 figure

    Crossing Minimization for 1-page and 2-page Drawings of Graphs with Bounded Treewidth

    Full text link
    We investigate crossing minimization for 1-page and 2-page book drawings. We show that computing the 1-page crossing number is fixed-parameter tractable with respect to the number of crossings, that testing 2-page planarity is fixed-parameter tractable with respect to treewidth, and that computing the 2-page crossing number is fixed-parameter tractable with respect to the sum of the number of crossings and the treewidth of the input graph. We prove these results via Courcelle's theorem on the fixed-parameter tractability of properties expressible in monadic second order logic for graphs of bounded treewidth.Comment: Graph Drawing 201

    Binary Black Hole Coalescence in Semi-Analytic Puncture Evolution

    Full text link
    Binary black-hole coalescence is treated semi-analytically by a novel approach. Our prescription employs the conservative Skeleton Hamiltonian that describes orbiting Brill-Lindquist wormholes (termed punctures in Numerical Relativity) within a waveless truncation to the Einstein field equations [G. Faye, P. Jaranowski and G. Sch\"afer, Phys. Rev. D {\bf 69}, 124029 (2004)]. We incorporate, in a transparent Hamiltonian way and in Burke-Thorne gauge structure, the effects of gravitational radiation reaction into the above Skeleton dynamics with the help of 3.5PN accurate angular momentum flux for compact binaries in quasi-circular orbits to obtain a Semi-Analytic Puncture Evolution to model merging black-hole binaries. With the help of the TaylorT4 approximant at 3.5PN order, we perform a {\it first-order} comparison between gravitational wave phase evolutions in Numerical Relativity and our approach for equal-mass binary black holes. This comparison reveals that a modified Skeletonian reactive dynamics that employs flexible parameters will be required to prevent the dephasing between our scheme and Numerical Relativity, similar to what is pursued in the Effective One Body approach. A rough estimate for the gravitational waveform associated with the binary black-hole coalescence in our approach is also provided.Comment: 16 pages, 5 figure
    • …
    corecore