4,264 research outputs found

    Context-Based Entity Matching for Big Data

    Get PDF
    In the Big Data era, where variety is the most dominant dimension, the RDF data model enables the creation and integration of actionable knowledge from heterogeneous data sources. However, the RDF data model allows for describing entities under various contexts, e.g., people can be described from its demographic context, but as well from their professional contexts. Context-aware description poses challenges during entity matching of RDF datasets—the match might not be valid in every context. To perform a contextually relevant entity matching, the specific context under which a data-driven task, e.g., data integration is performed, must be taken into account. However, existing approaches only consider inter-schema and properties mapping of different data sources and prevent users from selecting contexts and conditions during a data integration process. We devise COMET, an entity matching technique that relies on both the knowledge stated in RDF vocabularies and a context-based similarity metric to map contextually equivalent RDF graphs. COMET follows a two-fold approach to solve the problem of entity matching in RDF graphs in a context-aware manner. In the first step, COMET computes the similarity measures across RDF entities and resorts to the Formal Concept Analysis algorithm to map contextually equivalent RDF entities. Finally, COMET combines the results of the first step and executes a 1-1 perfect matching algorithm for matching RDF entities based on the combined scores. We empirically evaluate the performance of COMET on testbed from DBpedia. The experimental results suggest that COMET accurately matches equivalent RDF graphs in a context-dependent manner

    Words are Malleable: Computing Semantic Shifts in Political and Media Discourse

    Get PDF
    Recently, researchers started to pay attention to the detection of temporal shifts in the meaning of words. However, most (if not all) of these approaches restricted their efforts to uncovering change over time, thus neglecting other valuable dimensions such as social or political variability. We propose an approach for detecting semantic shifts between different viewpoints--broadly defined as a set of texts that share a specific metadata feature, which can be a time-period, but also a social entity such as a political party. For each viewpoint, we learn a semantic space in which each word is represented as a low dimensional neural embedded vector. The challenge is to compare the meaning of a word in one space to its meaning in another space and measure the size of the semantic shifts. We compare the effectiveness of a measure based on optimal transformations between the two spaces with a measure based on the similarity of the neighbors of the word in the respective spaces. Our experiments demonstrate that the combination of these two performs best. We show that the semantic shifts not only occur over time, but also along different viewpoints in a short period of time. For evaluation, we demonstrate how this approach captures meaningful semantic shifts and can help improve other tasks such as the contrastive viewpoint summarization and ideology detection (measured as classification accuracy) in political texts. We also show that the two laws of semantic change which were empirically shown to hold for temporal shifts also hold for shifts across viewpoints. These laws state that frequent words are less likely to shift meaning while words with many senses are more likely to do so.Comment: In Proceedings of the 26th ACM International on Conference on Information and Knowledge Management (CIKM2017
    • …
    corecore