241 research outputs found

    Turbo space-time coded modulation : principle and performance analysis

    Get PDF
    A breakthrough in coding was achieved with the invention of turbo codes. Turbo codes approach Shannon capacity by displaying the properties of long random codes, yet allowing efficient decoding. Coding alone, however, cannot fully address the problem of multipath fading channel. Recent advances in information theory have revolutionized the traditional view of multipath channel as an impairment. New results show that high gains in capacity can be achieved through the use of multiple antennas at the transmitter and the receiver. To take advantage of these new results in information theory, it is necessary to devise methods that allow communication systems to operate close to the predicted capacity. One such method recently invented is space-time coding, which provides both coding gain and diversity advantage. In this dissertation, a new class of codes is proposed that extends the concept of turbo coding to include space-time encoders as constituent building blocks of turbo codes. The codes are referred to as turbo spacetime coded modulation (turbo-STCM). The motivation behind the turbo-STCM concept is to fuse the important properties of turbo and space-time codes into a unified design framework. A turbo-STCM encoder is proposed, which consists of two space-time codes in recursive systematic form concatenated in parallel. An iterative symbol-by-symbol maximum a posteriori algorithm operating in the log domain is developed for decoding turbo-STCM. The decoder employs two a posteriori probability (APP) computing modules concatenated in parallel; one module for each constituent code. The analysis of turbo-STCM is demonstrated through simulations and theoretical closed-form expressions. Simulation results are provided for 4-PSK and 8-PSK schemes over the Rayleigh block-fading channel. It is shown that the turbo-STCM scheme features full diversity and full coding rate. The significant gain can be obtained in performance over conventional space-time codes of similar complexity. The analytical union bound to the bit error probability is derived for turbo-STCM over the additive white Gaussian noise (AWGN) and the Rayleigh block-fading channels. The bound makes it possible to express the performance analysis of turbo-STCM in terms of the properties of the constituent space-time codes. The union bound is demonstrated for 4-PSK and 8-PSK turbo-STCM with two transmit antennas and one/two receive antennas. Information theoretic bounds such as Shannon capacity, cutoff rate, outage capacity and the Fano bound, are computed for multiantenna systems over the AWGN and fading channels. These bounds are subsequently used as benchmarks for demonstrating the performance of turbo-STCM

    Performance analysis of channel codes in multiple antenna OFDM systems

    Get PDF
    Multiple antenna techniques are used to increase the robustness and performance of wireless networks. Multiple antenna techniques can achieve diversity and increase bandwidth efficiency when specially designed channel codes are used at the scheme’s transmitter. These channel codes can be designed in the space, time and frequency domain. These specially designed channel codes in the space and time domain are actually designed for flat fading channels and in frequency selective fading channel, their performance may be degraded. To counteract this possible performance degradation in frequency selective fading channel, two main approaches can be applied to mitigate the effect of the symbol interference due to the frequency selective fading channel. These approaches are multichannel equalisation and orthogonal frequency division multiplexing (OFDM). In this thesis, a multichannel equalisation technique and OFDM were applied to channel codes specially designed for multiple antenna systems. An optimum receiver was proposed for super-orthogonal space-time trellis codes in a multichannel equalised frequency selective environment. Although the proposed receiver had increased complexity, the diversity order is still the same as compared to the code in a flat fading channel. To take advantage of the multipath diversity possible in a frequency selective fading channel, super-orthogonal block codes were employed in an OFDM environment. A new kind of super-orthogonal block code was proposed in this thesis. Super-orthogonal space-frequency trellis-coded OFDM was proposed to take advantage of not only the possible multipath diversity but also the spatial diversity for coded OFDM schemes. Based on simulation results in this thesis, the proposed coded OFDM scheme performs better than all other coded OFDM schemes (i.e. space time trellis-coded OFDM, space-time block coded OFDM, space-frequency block coded OFDM and super-orthogonal space-time trellis-coded OFDM). A simplified channel estimation algorithm was proposed for two of the coded OFDM schemes, which form a broad-based classification of coded OFDM schemes, i.e. trelliscoded schemes and block-coded schemes. Finally in this thesis performance analysis using the Gauss Chebychev quadrature technique as a way of validating simulation results was done for super-orthogonal block coded OFDM schemes when channel state information is known and when it is estimated. The results obtained show that results obtained via simulation and analysis are asymptotic and therefore the proposed analysis technique can be use to obtain error rate values for different SNR region instead of time consuming simulation.Thesis (PhD)--University of Pretoria, 2012.Electrical, Electronic and Computer Engineeringunrestricte

    High rate space time code with linear decoding complexity for multiple transmitting antennas

    Get PDF
    The multipath nature of the wireless channel, results in a superposition of the signals of each path at the receiver. This can lead to either constructive or destructive interference. Strong destructive interference is frequently referred to as deep fade and may result in temporary failure of communication due to the severe drop in the channel\u27s signal-to-noise ratio (SNR). To avoid this situation, signal diversity might be introduced. When having more than one antenna at the transmitter and / or receiver, forming a Multiple-Input Multiple-Output (MIMO) channel, spatial diversity can be employed to overcome the fading problem. Space time block codes (STBC) have been shown to be used well with the MIMO channel. Each type of STBC is designed to optimize a different criteria such as rate and diversity, while other characteristics of the code are its error performance and decoding computational complexity. The Orthogonal STBC (OSTBC) family of codes is known to achieve full diversity as well as very simple implementation of the Maximum Likelihood (ML) decoder. However, it was proven that, with complex symbol constellation one cannot achieve a full rate code when the number of transmitting antennas is larger than two. Quasi OSTBC are codes with full rate but with the penalty of more complex decoding, and in general does not achieve full diversity. In this work, new techniques for OSTBC transmission / decoding are explored, such that a full rate code can be transmitted and decoded with linear complexity. The Row Elimination Method (REM) for OSTBC transmission is introduced, which basically involves the transmission of only part of the original OSTBC codeword, resulting in a full rate code termed Semi-Orthogonal STBC (SSTBC). Novel decoding scheme is presented, such that the SSTBC decoding computational complexity remains linear although the transmitted codeword is not orthogonal anymore. A new OSTBC, that complies with the new scheme\u27s requirements, is presented for any number of transmit antennas. The performance of the new scheme is studied under various settings, such as system with limited feedback and multiple antennas at the receiver. The general decoding techniques presented for STBC, assume perfect channel knowledge at the receiver. It was shown, that the performance of any STBC system is severely degraded due to partial channel state information, results from imperfect channel estimation. To minimize the performance loss, one may lengthen the training sequences used for the channel estimation which, inevitably, results in some rate loss. In addition, complex decoding schemes can be used at the receiver to jointly decode the data while enhancing the channel estimation. It is suggested in this work to apply adaptive techniques to mitigate the performance loss without the penalty of additional rate loss or complex decoding. Namely, the bootstrap algorithm is used to further refine the received signals, resulting in better effective rate and performance in the presence of channel estimation errors. Modified implementations for the bootstrap\u27s weights calculation method are also presented, to improve the convergence rate of the algorithm, as well as to maintain a very low computational burden

    Interference-Mitigating Waveform Design for Next-Generation Wireless Systems

    No full text
    A brief historical perspective of the evolution of waveform designs employed in consecutive generations of wireless communications systems is provided, highlighting the range of often conflicting demands on the various waveform characteristics. As the culmination of recent advances in the field the underlying benefits of various Multiple Input Multiple Output (MIMO) schemes are highlighted and exemplified. As an integral part of the appropriate waveform design, cognizance is given to the particular choice of the duplexing scheme used for supporting full-duplex communications and it is demonstrated that Time Division Duplexing (TDD) is substantially outperformed by Frequency Division Duplexing (FDD), unless the TDD scheme is combined with further sophisticated scheduling, MIMOs and/or adaptive modulation/coding. It is also argued that the specific choice of the Direct-Sequence (DS) spreading codes invoked in DS-CDMA predetermines the properties of the system. It is demonstrated that a specifically designed family of spreading codes exhibits a so-called interference-free window (IFW) and hence the resultant system is capable of outperforming its standardised counterpart employing classic Orthogonal Variable Spreading Factor (OVSF) codes under realistic dispersive channel conditions, provided that the interfering multi-user and multipath components arrive within this IFW. This condition may be ensured with the aid of quasisynchronous adaptive timing advance control. However, a limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles, employing a combination of several spreading sequences in the time-frequency and spatial-domain. The paper is concluded by quantifying the achievable user load of a UTRA-like TDD Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes exhibiting an IFW in comparison to that of its counterpart using OVSF codes. Both system's performance is enhanced using beamforming MIMOs

    Improving Bandwidth Utilization in a 1 Tbps Airborne MIMO Communications Downlink

    Get PDF
    FEC techniques are compared for different MIMO configurations of a high altitude, extremely wide bandwidth radio frequency downlink. Monte Carlo simulations are completed in MATLAB® with the aim of isolating the impacts of turbo codes and LDPC codes on system throughput and error performance. The system is modeled as a transmit-only static array at an altitude of 60,000 feet, with no interferers in the channel. Transmissions are received by a static receiver array. Simulations attempt to determine what modulation types should be considered for practical implementation, and what FEC codes enable these modulation schemes. The antenna configurations used in this study are [44:352], [62:248], and [80:160] transmitters to receivers. Effects from waveform generation, mixing, down-conversion, and amplification are not considered. Criteria of interest were BER and throughput, with the maximum allowable value of the former set at 1 x 10-5, and the latter set at a 1 terabits per second (Tbps) transfer rate for a successful configuration. Results show that the best performing system configuration was unable to meet both criteria, but was capable of improving over Brueggen\u27s 2012 research, which used Reed-Solomon codes and a MIMO configuration of [80:160], by 18.6%. The best-case configuration produced a throughput rate of 0.83 Tbps at a BER of less than 1 x 10-8, by implementing a rate 2/3 LDPC code with QAM constellation of 16 symbols

    PERFORMANCE ANALYSIS OF DIFFERENT SCHEMES FOR TRANSMISSION OF WATERMARKED MEDICAL IMAGES OVER FADING CHANNELS

    Get PDF
    ABSTRACT Performance Analysis of Different Schemes for Transmission of Watermarked Medical images over Fading Channels Praveen Kumar Korrai In this thesis, we investigate different types of robust schemes for transmission of medical images with concealed patient information as a watermark. In these schemes, spatial domain digital watermarking technique is adapted to embed the patient information as a watermark into the lower order bits of the medical images to reduce the storage and transmission overheads. The watermark, which comprises text data, is encrypted to prevent unauthorized access of data. To enhance the robustness of the embedded information, the encrypted watermark is coded by concatenation of Reed Solomon (RS) and low density parity check (LDPC) codes. A robust scheme for transmission of watermarked images over impulsive noisy wireless channels is first proposed and its performance analyzed. In this scheme, the bursty wireless channel is simulated by adding impulse noise to the watermark embedded image. Furthermore, turbo channel coding is used to correct the transmission errors over impulsive noisy wireless channels. However, single input single output (SISO) channel capacity is not enough to provide modern wireless services such as data and multimedia messaging services. Further, it is not reliable due to multipath fading. To overcome these problems, a multiple-input multiple-output (MIMO) transmission scheme in which multiple antennas are used at both the transmitter and the receiver has emerged as one of the most significant technical breakthroughs in modern wireless communications. MIMO can improve the channel capacity and provide diversity gain. Hence, a scheme with a MIMO channel is proposed for the transmission of watermarked medical images over Rayleigh flat fading channels and its performance analyzed using MIMO maximum likelihood detector at the receiver. We present another scheme, namely, MIMO space frequency block coded OFDM (MIMO SFBC OFDM) in this thesis for transmission of watermarked medical images over Rayleigh fading channels to mitigate the detrimental effects due to frequency selective fading. The performance of this MIMO SFBC OFDM scheme is analyzed and compared with that of SISO-OFDM using minimum mean square error V-BLAST- based detection at the receiver. The efficacy of the different proposed schemes is illustrated through implementation results on watermarked medical images

    Super-orthogonal space-time turbo codes in Rayleigh fading channels.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2005.The vision of anytime, anywhere communications coupled by the rapid growth of wireless subscribers and increased volumes of internet users, suggests that the widespread demand for always-on access data, is sure to be a major driver for the wireless industry in the years to come. Among many cutting edge wireless technologies, a new class of transmission techniques, known as Multiple-Input Multiple-Output (MIMO) techniques, has emerged as an important technology leading to promising link capacity gains of several fold increase in data rates and spectral efficiency. While the use of MIMO techniques in the third generation (3G) standards is minimal, it is anticipated that these technologies will play an important role in the physical layer of fixed and fourth generation (4G) wireless systems. Concatenated codes, a class of forward error correction codes, of which Turbo codes are a classical example, have been shown to achieve reliable performance which approach the Shannon limit. An effective and practical way to approach the capacity of MIMO wireless channels is to employ space-time coding (STC). Space-Time coding is based on introducing joint correlation in transmitted signals in both the space and time domains. Space-Time Trellis Codes (STTCs) have been shown to provide the best trade-off in terms of coding gain advantage, improved data rates and computational complexity. Super-Orthogonal Space-Time Trellis Coding (SOSTTC) is the recently proposed form of space-time trellis coding which outperforms its predecessor. The code has a systematic design method to maximize the coding gain for a given rate, constellation size, and number of states. Simulation and analytical results are provided to justify the improved performance. The main focus of this dissertation is on STTCs, SOSTTCs and their concatenated versions in quasi-static and rapid Rayleigh fading channels. Turbo codes and space-time codes have made significant impact in terms of the theory and practice by closing the gap on the Shannon limit and the large capacity gains provided by the MIMO channel, respectively. However, a convincing solution to exploit the capabilities provided by a MIMO channel would be to build the turbo processing principle into the design of MIMO architectures. The field of concatenated STTCs has already received much attention and has shown improved performance over conventional STTCs. Recently simple and double concatenated STTCs structures have shown to provide a further improvement performance. Motivated by this fact, two concatenated SOSTTC structures are proposed called Super-orthogonal space-time turbo codes. The performance of these new concatenated SOSTTC is compared with that of concatenated STTCs and conventional SOSTTCs with simulations in Rayleigh fading channels. It is seen that the SOST-CC system outperforms the ST-CC system in rapid fading channels, whereas it maintains performance similar to that in quasi-static. The SOST-SC system has improved performance for larger frame lengths and overall maintains similar performance with ST-SC systems. A further investigation of these codes with channel estimation errors is also provided
    • …
    corecore