1,940 research outputs found

    Sum-of-squares proofs and the quest toward optimal algorithms

    Full text link
    In order to obtain the best-known guarantees, algorithms are traditionally tailored to the particular problem we want to solve. Two recent developments, the Unique Games Conjecture (UGC) and the Sum-of-Squares (SOS) method, surprisingly suggest that this tailoring is not necessary and that a single efficient algorithm could achieve best possible guarantees for a wide range of different problems. The Unique Games Conjecture (UGC) is a tantalizing conjecture in computational complexity, which, if true, will shed light on the complexity of a great many problems. In particular this conjecture predicts that a single concrete algorithm provides optimal guarantees among all efficient algorithms for a large class of computational problems. The Sum-of-Squares (SOS) method is a general approach for solving systems of polynomial constraints. This approach is studied in several scientific disciplines, including real algebraic geometry, proof complexity, control theory, and mathematical programming, and has found applications in fields as diverse as quantum information theory, formal verification, game theory and many others. We survey some connections that were recently uncovered between the Unique Games Conjecture and the Sum-of-Squares method. In particular, we discuss new tools to rigorously bound the running time of the SOS method for obtaining approximate solutions to hard optimization problems, and how these tools give the potential for the sum-of-squares method to provide new guarantees for many problems of interest, and possibly to even refute the UGC.Comment: Survey. To appear in proceedings of ICM 201

    A note on Probably Certifiably Correct algorithms

    Get PDF
    Many optimization problems of interest are known to be intractable, and while there are often heuristics that are known to work on typical instances, it is usually not easy to determine a posteriori whether the optimal solution was found. In this short note, we discuss algorithms that not only solve the problem on typical instances, but also provide a posteriori certificates of optimality, probably certifiably correct (PCC) algorithms. As an illustrative example, we present a fast PCC algorithm for minimum bisection under the stochastic block model and briefly discuss other examples

    New Dependencies of Hierarchies in Polynomial Optimization

    Full text link
    We compare four key hierarchies for solving Constrained Polynomial Optimization Problems (CPOP): Sum of Squares (SOS), Sum of Diagonally Dominant Polynomials (SDSOS), Sum of Nonnegative Circuits (SONC), and the Sherali Adams (SA) hierarchies. We prove a collection of dependencies among these hierarchies both for general CPOPs and for optimization problems on the Boolean hypercube. Key results include for the general case that the SONC and SOS hierarchy are polynomially incomparable, while SDSOS is contained in SONC. A direct consequence is the non-existence of a Putinar-like Positivstellensatz for SDSOS. On the Boolean hypercube, we show as a main result that Schm\"udgen-like versions of the hierarchies SDSOS*, SONC*, and SA* are polynomially equivalent. Moreover, we show that SA* is contained in any Schm\"udgen-like hierarchy that provides a O(n) degree bound.Comment: 26 pages, 4 figure

    Decomposing Overcomplete 3rd Order Tensors using Sum-of-Squares Algorithms

    Get PDF
    Tensor rank and low-rank tensor decompositions have many applications in learning and complexity theory. Most known algorithms use unfoldings of tensors and can only handle rank up to n⌊p/2⌋n^{\lfloor p/2 \rfloor} for a pp-th order tensor in Rnp\mathbb{R}^{n^p}. Previously no efficient algorithm can decompose 3rd order tensors when the rank is super-linear in the dimension. Using ideas from sum-of-squares hierarchy, we give the first quasi-polynomial time algorithm that can decompose a random 3rd order tensor decomposition when the rank is as large as n3/2/polylognn^{3/2}/\textrm{polylog} n. We also give a polynomial time algorithm for certifying the injective norm of random low rank tensors. Our tensor decomposition algorithm exploits the relationship between injective norm and the tensor components. The proof relies on interesting tools for decoupling random variables to prove better matrix concentration bounds, which can be useful in other settings

    The power of sum-of-squares for detecting hidden structures

    Full text link
    We study planted problems---finding hidden structures in random noisy inputs---through the lens of the sum-of-squares semidefinite programming hierarchy (SoS). This family of powerful semidefinite programs has recently yielded many new algorithms for planted problems, often achieving the best known polynomial-time guarantees in terms of accuracy of recovered solutions and robustness to noise. One theme in recent work is the design of spectral algorithms which match the guarantees of SoS algorithms for planted problems. Classical spectral algorithms are often unable to accomplish this: the twist in these new spectral algorithms is the use of spectral structure of matrices whose entries are low-degree polynomials of the input variables. We prove that for a wide class of planted problems, including refuting random constraint satisfaction problems, tensor and sparse PCA, densest-k-subgraph, community detection in stochastic block models, planted clique, and others, eigenvalues of degree-d matrix polynomials are as powerful as SoS semidefinite programs of roughly degree d. For such problems it is therefore always possible to match the guarantees of SoS without solving a large semidefinite program. Using related ideas on SoS algorithms and low-degree matrix polynomials (and inspired by recent work on SoS and the planted clique problem by Barak et al.), we prove new nearly-tight SoS lower bounds for the tensor and sparse principal component analysis problems. Our lower bounds for sparse principal component analysis are the first to suggest that going beyond existing algorithms for this problem may require sub-exponential time

    Lower bounds on the size of semidefinite programming relaxations

    Full text link
    We introduce a method for proving lower bounds on the efficacy of semidefinite programming (SDP) relaxations for combinatorial problems. In particular, we show that the cut, TSP, and stable set polytopes on nn-vertex graphs are not the linear image of the feasible region of any SDP (i.e., any spectrahedron) of dimension less than 2nc2^{n^c}, for some constant c>0c > 0. This result yields the first super-polynomial lower bounds on the semidefinite extension complexity of any explicit family of polytopes. Our results follow from a general technique for proving lower bounds on the positive semidefinite rank of a matrix. To this end, we establish a close connection between arbitrary SDPs and those arising from the sum-of-squares SDP hierarchy. For approximating maximum constraint satisfaction problems, we prove that SDPs of polynomial-size are equivalent in power to those arising from degree-O(1)O(1) sum-of-squares relaxations. This result implies, for instance, that no family of polynomial-size SDP relaxations can achieve better than a 7/8-approximation for MAX-3-SAT
    • …
    corecore