216 research outputs found

    Graphs Identified by Logics with Counting

    Full text link
    We classify graphs and, more generally, finite relational structures that are identified by C2, that is, two-variable first-order logic with counting. Using this classification, we show that it can be decided in almost linear time whether a structure is identified by C2. Our classification implies that for every graph identified by this logic, all vertex-colored versions of it are also identified. A similar statement is true for finite relational structures. We provide constructions that solve the inversion problem for finite structures in linear time. This problem has previously been shown to be polynomial time solvable by Martin Otto. For graphs, we conclude that every C2-equivalence class contains a graph whose orbits are exactly the classes of the C2-partition of its vertex set and which has a single automorphism witnessing this fact. For general k, we show that such statements are not true by providing examples of graphs of size linear in k which are identified by C3 but for which the orbit partition is strictly finer than the Ck-partition. We also provide identified graphs which have vertex-colored versions that are not identified by Ck.Comment: 33 pages, 8 Figure

    On the independence ratio of distance graphs

    Full text link
    A distance graph is an undirected graph on the integers where two integers are adjacent if their difference is in a prescribed distance set. The independence ratio of a distance graph GG is the maximum density of an independent set in GG. Lih, Liu, and Zhu [Star extremal circulant graphs, SIAM J. Discrete Math. 12 (1999) 491--499] showed that the independence ratio is equal to the inverse of the fractional chromatic number, thus relating the concept to the well studied question of finding the chromatic number of distance graphs. We prove that the independence ratio of a distance graph is achieved by a periodic set, and we present a framework for discharging arguments to demonstrate upper bounds on the independence ratio. With these tools, we determine the exact independence ratio for several infinite families of distance sets of size three, determine asymptotic values for others, and present several conjectures.Comment: 39 pages, 12 figures, 6 table

    Divisible Design Graphs

    Get PDF
    AMS Subject Classification: 05B05, 05E30, 05C50.Strongly regular graph;Group divisible design;Deza graph;(v;k;)-Graph

    Forwarding and optical indices of 4-regular circulant networks

    Get PDF
    An all-to-all routing in a graph GG is a set of oriented paths of GG, with exactly one path for each ordered pair of vertices. The load of an edge under an all-to-all routing RR is the number of times it is used (in either direction) by paths of RR, and the maximum load of an edge is denoted by π(G,R)\pi(G,R). The edge-forwarding index π(G)\pi(G) is the minimum of π(G,R)\pi(G,R) over all possible all-to-all routings RR, and the arc-forwarding index π(G)\overrightarrow{\pi}(G) is defined similarly by taking direction into consideration, where an arc is an ordered pair of adjacent vertices. Denote by w(G,R)w(G,R) the minimum number of colours required to colour the paths of RR such that any two paths having an edge in common receive distinct colours. The optical index w(G)w(G) is defined to be the minimum of w(G,R)w(G,R) over all possible RR, and the directed optical index w(G)\overrightarrow{w}(G) is defined similarly by requiring that any two paths having an arc in common receive distinct colours. In this paper we obtain lower and upper bounds on these four invariants for 44-regular circulant graphs with connection set {±1,±s}\{\pm 1,\pm s\}, 1<s<n/21<s<n/2. We give approximation algorithms with performance ratio a small constant for the corresponding forwarding index and routing and wavelength assignment problems for some families of 44-regular circulant graphs.Comment: 19 pages, no figure in Journal of Discrete Algorithms 201

    Chromatic numbers of Cayley graphs of abelian groups: A matrix method

    Full text link
    In this paper, we take a modest first step towards a systematic study of chromatic numbers of Cayley graphs on abelian groups. We lose little when we consider these graphs only when they are connected and of finite degree. As in the work of Heuberger and others, in such cases the graph can be represented by an m×rm\times r integer matrix, where we call mm the dimension and rr the rank. Adding or subtracting rows produces a graph homomorphism to a graph with a matrix of smaller dimension, thereby giving an upper bound on the chromatic number of the original graph. In this article we develop the foundations of this method. In a series of follow-up articles using this method, we completely determine the chromatic number in cases with small dimension and rank; prove a generalization of Zhu's theorem on the chromatic number of 66-valent integer distance graphs; and provide an alternate proof of Payan's theorem that a cube-like graph cannot have chromatic number 3.Comment: 17 page

    Chromatic numbers of Cayley graphs of abelian groups: Cases of small dimension and rank

    Full text link
    A connected Cayley graph on an abelian group with a finite generating set SS can be represented by its Heuberger matrix, i.e., an integer matrix whose columns generate the group of relations between members of SS. In a companion article, the authors lay the foundation for the use of Heuberger matrices to study chromatic numbers of abelian Cayley graphs. We call the number of rows in the Heuberger matrix the dimension, and the number of columns the rank. In this paper, we give precise numerical conditions that completely determine the chromatic number in all cases with dimension 11; with rank 11; and with dimension 3\leq 3 and rank 2\leq 2. For such a graph without loops, we show that it is 44-colorable if and only if it does not contain a 55-clique, and it is 33-colorable if and only if it contains neither a diamond lanyard nor a C13(1,5)C_{13}(1,5), both of which we define herein. In a separate companion article, we show that we recover Zhu's theorem on the chromatic number of 66-valent integer distance graphs as a special case of our theorem for dimension 33 and rank 22.Comment: 27 page

    Interleaving Schemes on Circulant Graphs with Two Offsets

    Get PDF
    To be added

    Between 2- and 3-colorability

    Full text link
    We consider the question of the existence of homomorphisms between Gn,pG_{n,p} and odd cycles when p=c/n,1<c4p=c/n,\,1<c\leq 4. We show that for any positive integer \ell, there exists ϵ=ϵ()\epsilon=\epsilon(\ell) such that if c=1+ϵc=1+\epsilon then w.h.p. Gn,pG_{n,p} has a homomorphism from Gn,pG_{n,p} to C2+1C_{2\ell+1} so long as its odd-girth is at least 2+12\ell+1. On the other hand, we show that if c=4c=4 then w.h.p. there is no homomorphism from Gn,pG_{n,p} to C5C_5. Note that in our range of interest, χ(Gn,p)=3\chi(G_{n,p})=3 w.h.p., implying that there is a homomorphism from Gn,pG_{n,p} to C3C_3
    corecore