573 research outputs found

    Massive MIMO Performance - TDD Versus FDD: What Do Measurements Say?

    Full text link
    Downlink beamforming in Massive MIMO either relies on uplink pilot measurements - exploiting reciprocity and TDD operation, or on the use of a predetermined grid of beams with user equipments reporting their preferred beams, mostly in FDD operation. Massive MIMO in its originally conceived form uses the first strategy, with uplink pilots, whereas there is currently significant commercial interest in the second, grid-of-beams. It has been analytically shown that in isotropic scattering (independent Rayleigh fading) the first approach outperforms the second. Nevertheless there remains controversy regarding their relative performance in practice. In this contribution, the performances of these two strategies are compared using measured channel data at 2.6 GHz.Comment: Submitted to IEEE Transactions on Wireless Communications, 31/Mar/201

    Joint Design of Digital and Analog Processing for Downlink C-RAN with Large-Scale Antenna Arrays

    Full text link
    In millimeter-wave communication systems with large-scale antenna arrays, conventional digital beamforming may not be cost-effective. A promising solution is the implementation of hybrid beamforming techniques, which consist of low-dimensional digital beamforming followed by analog radio frequency (RF) beamforming. This work studies the optimization of hybrid beamforming in the context of a cloud radio access network (C-RAN) architecture. In a C-RAN system, digital baseband signal processing functionalities are migrated from remote radio heads (RRHs) to a baseband processing unit (BBU) in the "cloud" by means of finite-capacity fronthaul links. Specifically, this work tackles the problem of jointly optimizing digital beamforming and fronthaul quantization strategies at the BBU, as well as RF beamforming at the RRHs, with the goal of maximizing the weighted downlink sum-rate. Fronthaul capacity and per-RRH power constraints are enforced along with constant modulus constraints on the RF beamforming matrices. An iterative algorithm is proposed that is based on successive convex approximation and on the relaxation of the constant modulus constraint. The effectiveness of the proposed scheme is validated by numerical simulation results

    Multiuser Millimeter Wave Beamforming Strategies with Quantized and Statistical CSIT

    Full text link
    To alleviate the high cost of hardware in mmWave systems, hybrid analog/digital precoding is typically employed. In the conventional two-stage feedback scheme, the analog beamformer is determined by beam search and feedback to maximize the desired signal power of each user. The digital precoder is designed based on quantization and feedback of effective channel to mitigate multiuser interference. Alternatively, we propose a one-stage feedback scheme which effectively reduces the complexity of the signalling and feedback procedure. Specifically, the second-order channel statistics are leveraged to design digital precoder for interference mitigation while all feedback overhead is reserved for precise analog beamforming. Under a fixed total feedback constraint, we investigate the conditions under which the one-stage feedback scheme outperforms the conventional two-stage counterpart. Moreover, a rate splitting (RS) transmission strategy is introduced to further tackle the multiuser interference and enhance the rate performance. Consider (1) RS precoded by the one-stage feedback scheme and (2) conventional transmission strategy precoded by the two-stage scheme with the same first-stage feedback as (1) and also certain amount of extra second-stage feedback. We show that (1) can achieve a sum rate comparable to that of (2). Hence, RS enables remarkable saving in the second-stage training and feedback overhead.Comment: submitted to TW

    Hybrid Precoding for Multiuser Millimeter Wave Massive MIMO Systems : A Deep Learning Approach

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In multi-user millimeter wave (mmWave) multiple-input-multiple-output (MIMO) systems, hybrid precoding is a crucial task to lower the complexity and cost while achieving a sufficient sum-rate. Previous works on hybrid precoding were usually based on optimization or greedy approaches. These methods either provide higher complexity or have sub-optimum performance. Moreover, the performance of these methods mostly relies on the quality of the channel data. In this work, we propose a deep learning (DL) framework to improve the performance and provide less computation time as compared to conventional techniques. In fact, we design a convolutional neural network for MIMO (CNN-MIMO) that accepts as input an imperfect channel matrix and gives the analog precoder and combiners at the output. The procedure includes two main stages. First, we develop an exhaustive search algorithm to select the analog precoder and combiners from a predefined codebook maximizing the achievable sum-rate. Then, the selected precoder and combiners are used as output labels in the training stage of CNN-MIMO where the input-output pairs are obtained. We evaluate the performance of the proposed method through numerous and extensive simulations and show that the proposed DL framework outperforms conventional techniques. Overall, CNN-MIMO provides a robust hybrid precoding scheme in the presence of imperfections regarding the channel matrix. On top of this, the proposed approach exhibits less computation time with comparison to the optimization and codebook based approaches.Peer reviewe
    corecore