774 research outputs found

    Throughput Maximization for Mobile Relaying Systems

    Full text link
    This paper studies a novel mobile relaying technique, where relays of high mobility are employed to assist the communications from source to destination. By exploiting the predictable channel variations introduced by relay mobility, we study the throughput maximization problem in a mobile relaying system via dynamic rate and power allocations at the source and relay. An optimization problem is formulated for a finite time horizon, subject to an information-causality constraint, which results from the data buffering employed at the relay. It is found that the optimal power allocations across the different time slots follow a "stair-case" water filling (WF) structure, with non-increasing and non-decreasing water levels at the source and relay, respectively. For the special case where the relay moves unidirectionally from source to destination, the optimal power allocations reduce to the conventional WF with constant water levels. Numerical results show that with appropriate trajectory design, mobile relaying is able to achieve tremendous throughput gain over the conventional static relaying.Comment: submitted for possible conference publicatio

    Throughput Maximization for UAV-Aided Backscatter Communication Networks

    Get PDF
    This paper investigates unmanned aerial vehicle (UAV)-aided backscatter communication (BackCom) networks, where the UAV is leveraged to help the backscatter device (BD) forward signals to the receiver. Based on the presence or absence of a direct link between BD and receiver, two protocols, namely transmit-backscatter (TB) protocol and transmit-backscatter-relay (TBR) protocol, are proposed to utilize the UAV to assist the BD. In particular, we formulate the system throughput maximization problems for the two protocols by jointly optimizing the time allocation, reflection coefficient and UAV trajectory. Different static/dynamic circuit power consumption models for the two protocols are analyzed. The resulting optimization problems are shown to be non-convex, which are challenging to solve. We first consider the dynamic circuit power consumption model, and decompose the original problems into three sub-problems, namely time allocation optimization with fixed UAV trajectory and reflection coefficient, reflection coefficient optimization with fixed UAV trajectory and time allocation, and UAV trajectory optimization with fixed reflection coefficient and time allocation. Then, an efficient iterative algorithm is proposed for both protocols by leveraging the block coordinate descent method and successive convex approximation (SCA) techniques. In addition, for the static circuit power consumption model, we obtain the optimal time allocation with a given reflection coefficient and UAV trajectory and the optimal reflection coefficient with low computational complexity by using the Lagrangian dual method. Simulation results show that the proposed protocols are able to achieve significant throughput gains over the compared benchmarks

    Multicell Edge Coverage Enhancement Using Mobile UAV-Relay

    Get PDF
    Unmanned aerial vehicle (UAV)-assisted communication is a promising technology in future wireless communication networks. UAVs can not only help offload data traffic from ground base stations (GBSs) but also improve the Quality of Service (QoS) of cell-edge users (CEUs). In this article, we consider the enhancement of cell-edge communications through a mobile relay, i.e., UAV, in multicell networks. During each transmission period, GBSs first send data to the UAV, and then the UAV forwards its received data to CEUs according to a certain association strategy. In order to maximize the sum rate of all CEUs, we jointly optimize the UAV mobility management, including trajectory, velocity, and acceleration, and association strategy of CEUs to the UAV, subject to minimum rate requirements of CEUs, mobility constraints of the UAV, and causal buffer constraints in practice. To address the mixed-integer nonconvex problem, we transform it into two convex subproblems by applying tight bounds and relaxations. An iterative algorithm is proposed to solve the two subproblems in an alternating manner. Numerical results show that the proposed algorithm achieves higher rates of CEUs as compared with the existing benchmark schemes

    Real-time Optimal Resource Allocation for Embedded UAV Communication Systems

    Get PDF
    We consider device-to-device (D2D) wireless information and power transfer systems using an unmanned aerial vehicle (UAV) as a relay-assisted node. As the energy capacity and flight time of UAVs is limited, a significant issue in deploying UAV is to manage energy consumption in real-time application, which is proportional to the UAV transmit power. To tackle this important issue, we develop a real-time resource allocation algorithm for maximizing the energy efficiency by jointly optimizing the energy-harvesting time and power control for the considered (D2D) communication embedded with UAV. We demonstrate the effectiveness of the proposed algorithms as running time for solving them can be conducted in milliseconds.Comment: 11 pages, 5 figures, 1 table. This paper is accepted for publication on IEEE Wireless Communications Letter

    Securing UAV Communications Via Trajectory Optimization

    Full text link
    Unmanned aerial vehicle (UAV) communications has drawn significant interest recently due to many advantages such as low cost, high mobility, and on-demand deployment. This paper addresses the issue of physical-layer security in a UAV communication system, where a UAV sends confidential information to a legitimate receiver in the presence of a potential eavesdropper which are both on the ground. We aim to maximize the secrecy rate of the system by jointly optimizing the UAV's trajectory and transmit power over a finite horizon. In contrast to the existing literature on wireless security with static nodes, we exploit the mobility of the UAV in this paper to enhance the secrecy rate via a new trajectory design. Although the formulated problem is non-convex and challenging to solve, we propose an iterative algorithm to solve the problem efficiently, based on the block coordinate descent and successive convex optimization methods. Specifically, the UAV's transmit power and trajectory are each optimized with the other fixed in an alternating manner until convergence. Numerical results show that the proposed algorithm significantly improves the secrecy rate of the UAV communication system, as compared to benchmark schemes without transmit power control or trajectory optimization.Comment: Accepted by IEEE GLOBECOM 201
    • …
    corecore