15,622 research outputs found

    List-coloring and sum-list-coloring problems on graphs

    Get PDF
    Graph coloring is a well-known and well-studied area of graph theory that has many applications. In this dissertation, we look at two generalizations of graph coloring known as list-coloring and sum-list-coloring. In both of these types of colorings, one seeks to first assign palettes of colors to vertices and then choose a color from the corresponding palette for each vertex so that a proper coloring is obtained. A celebrated result of Thomassen states that every planar graph can be properly colored from any arbitrarily assigned palettes of five colors. This result is known as 5-list-colorability of planar graphs. Albertson asked whether Thomassen\u27s theorem can be extended by precoloring some vertices which are at a large enough distance apart. Hutchinson asked whether Thomassen\u27s theorem can be extended by allowing certain vertices to have palettes of size less than five assigned to them. In this dissertation, we explore both of these questions and answer them in the affirmative for various classes of graphs. We also provide a catalog of small configurations with palettes of different prescribed sizes and determine whether or not they can always be colored from palettes of such sizes. These small configurations can be useful in reducing certain planar graphs to obtain more information about their structure. Additionally, we look at the newer notion of sum-list-coloring where the sum choice number is the parameter of interest. In sum-list-coloring, we seek to minimize the sum of varying sizes of palettes of colors assigned the vertices of a graph. We compute the sum choice number for all graphs on at most five vertices, present some general results about sum-list-coloring, and determine the sum choice number for certain graphs made up of cycles

    Sum list coloring, the sum choice number, and sc-greedy graphs

    Full text link
    Let G=(V,E) be a graph and let f be a function that assigns list sizes to the vertices of G. It is said that G is f-choosable if for every assignment of lists of colors to the vertices of G for which the list sizes agree with f, there exists a proper coloring of G from the lists. The sum choice number is the minimum of the sum of list sizes for f over all choosable functions f for G. The sum choice number of a graph is always at most the sum |V|+|E|. When the sum choice number of G is equal to this upper bound, G is said to be sc-greedy. In this paper, we determine the sum choice number of all graphs on five vertices, show that trees of cycles are sc-greedy, and present some new general results about sum list coloring.Comment: 14 pages, 11 figure

    On List-Coloring and the Sum List Chromatic Number of Graphs.

    Get PDF
    This thesis explores several of the major results in list-coloring in an expository fashion. As a specialization of list coloring, the sum list chromatic number is explored in detail. Ultimately, the thesis is designed to motivate the discussion of coloring problems and, hopefully, interest the reader in the branch of coloring problems in graph theory

    A Branch and Price Algorithm for List Coloring Problem

    Get PDF
    Coloring problems in graphs have been used to model a wide range of real applications. In particular, the List Coloring Problem generalizes the well-known Graph Coloring Problem for which many exact algorithms have been developed. In this work, we present a Branch-and-Price algorithm for the weighted version of the List Coloring Problem, based on the one developed by Mehrotra and Trick (1996) for the Graph Coloring Problem. This version considers non-negative weights associated to each color and it is required to assign a color to each vertex from predetermined lists in such a way the sum of weights of the assigned colors is minimum. Computational experiments show the good performance of our approach, being able to comfortably solve instances whose graphs have up to seventy vertices. These experiences also bring out that the hardness of the instances of the List Coloring Problem does not seem to depend only on quantitative parameters such as the size of the graph, its density, and the size of list of colors, but also on the distribution of colors present in the lists.Fil: Lucci, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Nasini, Graciela Leonor. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Severin, Daniel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina10th Latin and American Algorithms, Graphs and Optimization Symposium (LAGOS 2019)Belo HorizonteBrasilCoordenação de Aperfeiçoamento de Pessoal de Nivel SuperiorConselho Nacional de Desenvolvimento Científico e Técnologico do BrasilUniversidade Federal de Minas Gerai

    Graph Coloring Problems and Group Connectivity

    Get PDF
    1. Group connectivity. Let A be an abelian group and let iA(G) be the smallest positive integer m such that Lm(G) is A-connected. A path P of G is a normal divalent path if all internal vertices of P are of degree 2 in G and if |E(P)|= 2, then P is not in a 3-cycle of G. Let l(G) = max{lcub}m : G has a normal divalent path of length m{rcub}. We obtain the following result. (i) If |A| ≥ 4, then iA( G) ≤ l(G). (ii) If | A| ≥ 4, then iA(G) ≤ |V(G)| -- Delta(G). (iii) Suppose that |A| ≥ 4 and d = diam( G). If d ≤ |A| -- 1, then iA(G) ≤ d; and if d ≥ |A|, then iA(G) ≤ 2d -- |A| + 1. (iv) iZ 3 (G) ≤ l(G) + 2. All those bounds are best possible.;2. Modulo orientation. A mod (2p + 1)-orientation D is an orientation of G such that d +D(v) = d--D(v) (mod 2p + 1) for any vertex v ∈ V ( G). We prove that for any integer t ≥ 2, there exists a finite family F = F(p, t) of graphs that do not have a mod (2p + 1)-orientation, such that every graph G with independence number at most t either admits a mod (2p+1)-orientation or is contractible to a member in F. In particular, the graph family F(p, 2) is determined, and our results imply that every 8-edge-connected graph G with independence number at most two admits a mod 5-orientation.;3. Neighbor sum distinguishing total coloring. A proper total k-coloring &phis; of a graph G is a mapping from V(G) ∪ E(G) to {lcub}1,2, . . .,k{rcub} such that no adjacent or incident elements in V(G) ∪ E( G) receive the same color. Let m&phis;( v) denote the sum of the colors on the edges incident with the vertex v and the color on v. A proper total k-coloring of G is called neighbor sum distinguishing if m &phis;(u) ≠ m&phis;( v) for each edge uv ∈ E( G ). Let chitSigma(G) be the neighbor sum distinguishing total chromatic number of a graph G. Pilsniak and Wozniak conjectured that for any graph G, chitSigma( G) ≤ Delta(G) + 3. We show that if G is a graph with treewidth ℓ ≥ 3 and Delta(G) ≥ 2ℓ + 3, then chitSigma( G) + ℓ -- 1. This upper bound confirms the conjecture for graphs with treewidth 3 and 4. Furthermore, when ℓ = 3 and Delta ≥ 9, we show that Delta(G)+1 ≤ chit Sigma(G) ≤ Delta(G)+2 and characterize graphs with equalities.;4. Star edge coloring. A star edge coloring of a graph is a proper edge coloring such that every connected 2-colored subgraph is a path with at most 3 edges. Let ch\u27st(G) be the list star chromatic index of G: the minimum s such that for every s-list assignment L for the edges, G has a star edge coloring from L. By introducing a stronger coloring, we show with a very concise proof that the upper bound of the star chromatic index of trees also holds for list star chromatic index of trees, i.e. ch\u27st( T) ≤ [3Delta/2] for any tree T with maximum degree Delta. And then by applying some orientation technique we present two upper bounds for list star chromatic index of k-degenerate graphs

    Online choosability of graphs

    Get PDF
    We study several problems in graph coloring. In list coloring, each vertex vv has a set L(v)L(v) of available colors and must be assigned a color from this set so that adjacent vertices receive distinct colors; such a coloring is an LL-coloring, and we then say that GG is LL-colorable. Given a graph GG and a function f:V(G)Nf:V(G)\to\N, we say that GG is ff-choosable if GG is LL-colorable for any list assignment LL such that L(v)f(v)|L(v)|\ge f(v) for all vV(G)v\in V(G). When f(v)=kf(v)=k for all vv and GG is ff-choosable, we say that GG is kk-choosable. The least kk such that GG is kk-choosable is the choice number, denoted ch(G)\ch(G). We focus on an online version of this problem, which is modeled by the Lister/Painter game. The game is played on a graph in which every vertex has a positive number of tokens. In each round, Lister marks a nonempty subset MM of uncolored vertices, removing one token at each marked vertex. Painter responds by selecting a subset DD of MM that forms an independent set in GG. A color distinct from those used on previous rounds is given to all vertices in DD. Lister wins by marking a vertex that has no tokens, and Painter wins by coloring all vertices in GG. When Painter has a winning strategy, we say that GG is ff-paintable. If f(v)=kf(v)=k for all vv and GG is ff-paintable, then we say that GG is kk-paintable. The least kk such that GG is kk-paintable is the paint number, denoted \pa(G). In Chapter 2, we develop useful tools for studying the Lister/Painter game. We study the paintability of graph joins and of complete bipartite graphs. In particular, \pa(K_{k,r})\le k if and only if r<kkr<k^k. In Chapter 3, we study the Lister/Painter game with the added restriction that the proper coloring produced by Painter must also satisfy some property P\mathcal{P}. The main result of Chapter 3 provides a general method to give a winning strategy for Painter when a strategy for the list coloring problem is already known. One example of a property P\mathcal{P} is that of having an rr-dynamic coloring, where a proper coloring is rr-dynamic if each vertex vv has at least min{r,d(v)}\min\set{r,d(v)} distinct colors in its neighborhood. For any graph GG and any rr, we give upper bounds on how many tokens are necessary for Painter to produce an rr-dynamic coloring of GG. The upper bounds are in terms of rr and the genus of a surface on which GG embeds. In Chapter 4, we study a version of the Lister/Painter game in which Painter must assign mm colors to each vertex so that adjacent vertices receive disjoint color sets. We characterize the graphs in which 2m2m tokens is sufficient to produce such a coloring. We strengthen Brooks' Theorem as well as Thomassen's result that planar graphs are 5-choosable. In Chapter 5, we study sum-paintability. The sum-paint number of a graph GG, denoted \spa(G), is the least f(v)\sum f(v) over all ff such that GG is ff-paintable. We prove the easy upper bound: \spa(G)\le|V(G)|+|E(G)|. When \spa(G)=|V(G)|+|E(G)|, we say that GG is sp-greedy. We determine the sum-paintability of generalized theta-graphs. The generalized theta-graph Θ1,,k\Theta_{\ell_1,\dots,\ell_k} consists of two vertices joined by kk paths of lengths \VEC \ell1k. We conjecture that outerplanar graphs are sp-greedy and prove several partial results toward this conjecture. In Chapter 6, we study what happens when Painter is allowed to allocate tokens as Lister marks vertices. The slow-coloring game is played by Lister and Painter on a graph GG. Lister marks a nonempty set of uncolored vertices and scores 1 point for each marked vertex. Painter colors all vertices in an independent subset of the marked vertices with a color distinct from those used previously in the game. The game ends when all vertices have been colored. The sum-color cost of a graph GG, denoted \scc(G), is the maximum score Lister can guarantee in the slow-coloring game on GG. We prove several general lower and upper bounds for \scc(G). In more detail, we study trees and prove sharp upper and lower bounds over all trees with nn vertices. We give a formula to determine \scc(G) exactly when α(G)2\alpha(G)\le2. Separately, we prove that \scc(G)=\spa(G) if and only if GG is a disjoint union of cliques. Lastly, we give lower and upper bounds on \scc(K_{r,s})
    corecore