1,411 research outputs found

    Suite of Meshless Algorithms for Accurate Computation of Soft Tissue Deformation for Surgical Simulation

    Full text link
    The ability to predict patient-specific soft tissue deformations is key for computer-integrated surgery systems and the core enabling technology for a new era of personalized medicine. Element-Free Galerkin (EFG) methods are better suited for solving soft tissue deformation problems than the finite element method (FEM) due to their capability of handling large deformation while also eliminating the necessity of creating a complex predefined mesh. Nevertheless, meshless methods based on EFG formulation, exhibit three major limitations: i) meshless shape functions using higher order basis cannot always be computed for arbitrarily distributed nodes (irregular node placement is crucial for facilitating automated discretization of complex geometries); ii) imposition of the Essential Boundary Conditions (EBC) is not straightforward; and, iii) numerical (Gauss) integration in space is not exact as meshless shape functions are not polynomial. This paper presents a suite of Meshless Total Lagrangian Explicit Dynamics (MTLED) algorithms incorporating a Modified Moving Least Squares (MMLS) method for interpolating scattered data both for visualization and for numerical computations of soft tissue deformation, a novel way of imposing EBC for explicit time integration, and an adaptive numerical integration procedure within the Meshless Total Lagrangian Explicit Dynamics algorithm. The appropriateness and effectiveness of the proposed methods is demonstrated using comparisons with the established non-linear procedures from commercial finite element software ABAQUS and experiments with very large deformations. To demonstrate the translational benefits of MTLED we also present a realistic brain-shift computation.Comment: Accepted for publication in Medical Image Analysi

    GPU-based Real-Time Soft Tissue Deformation with Cutting and Haptic Feedback

    Get PDF
    Special Issue on Biomechanical Modelling of Soft Tissue MotionInternational audienceThis article describes a series of contributions in the field of real-time simulation of soft tissue biomechanics. These contributions address various requirements for interactive simulation of complex surgical procedures. In particular, this article presents results in the areas of soft tissue deformation, contact modelling, simulation of cutting, and haptic rendering, which are all relevant to a variety of medical interventions. The contributions described in this article share a common underlying model of deformation and rely on GPU implementations to significantly improve computation times. This consistency in the modelling technique and computational approach ensures coherent results as well as efficient, robust and flexible solutions

    Interactively Cutting and Constraining Vertices in Meshes Using Augmented Matrices

    Get PDF
    We present a finite-element solution method that is well suited for interactive simulations of cutting meshes in the regime of linear elastic models. Our approach features fast updates to the solution of the stiffness system of equations to account for real-time changes in mesh connectivity and boundary conditions. Updates are accomplished by augmenting the stiffness matrix to keep it consistent with changes to the underlying model, without refactoring the matrix at each step of cutting. The initial stiffness matrix and its Cholesky factors are used to implicitly form and solve a Schur complement system using an iterative solver. As changes accumulate over many simulation timesteps, the augmented solution method slows down due to the size of the augmented matrix. However, by periodically refactoring the stiffness matrix in a concurrent background process, fresh Cholesky factors that incorporate recent model changes can replace the initial factors. This controls the size of the augmented matrices and provides a way to maintain a fast solution rate as the number of changes to a model grows. We exploit sparsity in the stiffness matrix, the right-hand-side vectors and the solution vectors to compute the solutions fast, and show that the time complexity of the update steps is bounded linearly by the size of the Cholesky factor of the initial matrix. Our complexity analysis and experimental results demonstrate that this approach scales well with problem size. Results for cutting and deformation of 3D linear elastic models are reported for meshes representing the brain, eye, and model problems with element counts up to 167,000; these show the potential of this method for real-time interactivity. An application to limbal incisions for surgical correction of astigmatism, for which linear elastic models and small deformations are sufficient, is included

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Registration of brain tumor images using hyper-elastic regularization

    Get PDF
    In this paper, we present a method to estimate a deformation field between two instances of a brain volume having tumor. The novelties include the assessment of the disease progress by observing the healthy tissue deformation and usage of the Neo-Hookean strain energy density model as a regularizer in deformable registration framework. Implementations on synthetic and patient data provide promising results, which might have relevant use in clinical problems

    VISIO-HAPTIC DEFORMABLE MODEL FOR HAPTIC DOMINANT PALPATION SIMULATOR

    Get PDF
    Vision and haptic are two most important modalities in a medical simulation. While visual cues assist one to see his actions when performing a medical procedure, haptic cues enable feeling the object being manipulated during the interaction. Despite their importance in a computer simulation, the combination of both modalities has not been adequately assessed, especially that in a haptic dominant environment. Thus, resulting in poor emphasis in resource allocation management in terms of effort spent in rendering the two modalities for simulators with realistic real-time interactions. Addressing this problem requires an investigation on whether a single modality (haptic) or a combination of both visual and haptic could be better for learning skills in a haptic dominant environment such as in a palpation simulator. However, before such an investigation could take place one main technical implementation issue in visio-haptic rendering needs to be addresse

    Real-time measurement corrected prediction of soft tissue response for medical simulations

    Get PDF
    Medical simulators, such as in palpation and disease diagnosis, require an efficient model of the biological soft tissue deformation. Hence, a computationally fast and accurate algorithm is required to support and enhance user interactions in near real-time simulations. The visual accuracy of such simulators is dependent on the user¿s reaction time. Static visual images that update at a rate of 25 Hz are perceived as real-time moving images. Hence, visualizing software requires fast algorithms to compute the deformation of soft tissue to facilitate a meaningful simulation. Furthermore, soft tissue behaviour should be modelled accurately while compatible with real-time computation. This work proposes a fast solver for the linearized finite element method (FEM) and validates the proposed algorithm with experimental results. The novelty of the method lies in the utilization of real-time force/displacement measurements that are embedded in the solution via the Kalman filter. A novel computational algorithm that utilizes the strength of the FEM in terms of accuracy and employs direct measurements from the manipulated tissue to overcome the slow computational process of the FEM is proposed in the first part of the thesis. As the behaviour of the mechanically loaded tissue can be regarded as linearly responding at each time step, a constant acceleration temporal discretization method, i.e., the Newmark-ß is employed. In real-time applications, the accuracy of the target variable highly depends on the accuracy of the inputs while differentiating noise from the signal is hardly ever possible. To address this problem, a Kalman filter-based method is developed. The proposed algorithm not only filters the noise from the measurements but also adapts the filter gain to the estimates of the target variable, i.e., the resulting tissue deformation. For a simulated tension test of a cubic model, the proposed algorithm achieves the update frequency of 63.3 Hz. This rate is a significant improvement in computational speed compared to the 5.8 Hz update rate by the classic FEM. Besides, this novel combination of the KF and the FEM makes it possible to expand the displacement estimates in the spatial domain when the measurements are only partially available at certain points. The performance of the above method is validated experimentally through a comparison with indentation tests on artificial human tissue-like material and with the FEM result under identical simulation conditions. The test is repeated on several samples, and the displacement variation from the FEM outcome is considered as the model error. Simulation results show that the proposed method achieves the deformation update frequency of 145.7 Hz compared to the 2.7 Hz from the reference FEM. The proposed method shows the same predictive ability, only 0.47% difference from FEM on average. Experimental validation of the proposed KF-FEM confirms that by consideration of both the measurement noise and the model error, the proposed method is capable of achieving high-frequency response without sacrificing the accuracy. Further to this, the experiments confirmed the linearized model response is reliable within the applied displacement range and therefore proving that KF can be employed. The developed KF-FEM was modified in the next study to address the problem resulting from inaccurate external loads measurements by the force sensors. In the modified version, both the external force, i.e., driving variable, and the displacement, i.e., driven variable, are taken as system states. It is considered that the uncertainty of the model input influences the accuracy of the system estimates. The modified model is calibrated to differentiate the system noise from the input noise. Numerical simulations were conducted on a liver shape geometrical model, and the simulation results demonstrate that more than 90% of the measurement noise is removed. The computational speed is also increased, delivering up to 89 Hz update rate. While the uncertainty of the external load is replicated in the displacements in an FEM solution, the developed algorithm can differentiate the measurement noise, including the displacement and external forces, from the system error, i.e., the FE model error. In the last study, the proposed model was developed to reflect the nonlinear behaviour of the manipulated tissue. The Central Difference time discretization method was used to model large deformations. A novel feature is that the Equation of motion is formulated within the element level rather than in the global spatial domain. This approach helped to improve the computational speed. Indentation with strains of slightly over 10% was simulated to assess the performance of the proposed model. The developed algorithm achieved the 33.85 Hz update frequency on a standard-issue PC and confirmed its suitability for real-time applications. Also, the proposed model achieved estimates with a maximum 5.75% mean absolute error (MAE) concerning the measurements while the classic FEM showed 6.20% MAE under identical simulation condition. Results confirm that deformation estimates for noisy boundary loads of the FEM can be improved with the help of direct measurements and yet be realistic in terms of real-time visual update. This study proposed a novel computational algorithm that achieved update frequencies of higher than 25 Hz to be perceived as real-time in human eyes. The developed KF-FEM model has also shown the potential of improving the FEM accuracy with the help of direct measurements. The proposed algorithm used partially available measurements and expanded its estimates in the spatial domain. The method was experimentally validated, and the model input uncertainty, as well as the nonlinear behaviour of the soft tissue, were assessed and verified

    Meshless Mechanics and Point-Based Visualization Methods for Surgical Simulations

    Get PDF
    Computer-based modeling and simulation practices have become an integral part of the medical education field. For surgical simulation applications, realistic constitutive modeling of soft tissue is considered to be one of the most challenging aspects of the problem, because biomechanical soft-tissue models need to reflect the correct elastic response, have to be efficient in order to run at interactive simulation rates, and be able to support operations such as cuts and sutures. Mesh-based solutions, where the connections between the individual degrees of freedom (DoF) are defined explicitly, have been the traditional choice to approach these problems. However, when the problem under investigation contains a discontinuity that disrupts the connectivity between the DoFs, the underlying mesh structure has to be reconfigured in order to handle the newly introduced discontinuity correctly. This reconfiguration for mesh-based techniques is typically called dynamic remeshing, and most of the time it causes the performance bottleneck in the simulation. In this dissertation, the efficiency of point-based meshless methods is investigated for both constitutive modeling of elastic soft tissues and visualization of simulation objects, where arbitrary discontinuities/cuts are applied to the objects in the context of surgical simulation. The point-based deformable object modeling problem is examined in three functional aspects: modeling continuous elastic deformations with, handling discontinuities in, and visualizing a point-based object. Algorithmic and implementation details of the presented techniques are discussed in the dissertation. The presented point-based techniques are implemented as separate components and integrated into the open-source software framework SOFA. The presented meshless continuum mechanics model of elastic tissue were verified by comparing it to the Hertzian non-adhesive frictionless contact theory. Virtual experiments were setup with a point-based deformable block and a rigid indenter, and force-displacement curves obtained from the virtual experiments were compared to the theoretical solutions. The meshless mechanics model of soft tissue and the integrated novel discontinuity treatment technique discussed in this dissertation allows handling cuts of arbitrary shape. The implemented enrichment technique not only modifies the internal mechanics of the soft tissue model, but also updates the point-based visual representation in an efficient way preventing the use of costly dynamic remeshing operations

    Realistic tool-tissue interaction models for surgical simulation and planning

    Get PDF
    Surgical simulators present a safe and potentially effective method for surgical training, and can also be used in pre- and intra-operative surgical planning. Realistic modeling of medical interventions involving tool-tissue interactions has been considered to be a key requirement in the development of high-fidelity simulators and planners. The soft-tissue constitutive laws, organ geometry and boundary conditions imposed by the connective tissues surrounding the organ, and the shape of the surgical tool interacting with the organ are some of the factors that govern the accuracy of medical intervention planning.\ud \ud This thesis is divided into three parts. First, we compare the accuracy of linear and nonlinear constitutive laws for tissue. An important consequence of nonlinear models is the Poynting effect, in which shearing of tissue results in normal force; this effect is not seen in a linear elastic model. The magnitude of the normal force for myocardial tissue is shown to be larger than the human contact force discrimination threshold. Further, in order to investigate and quantify the role of the Poynting effect on material discrimination, we perform a multidimensional scaling study. Second, we consider the effects of organ geometry and boundary constraints in needle path planning. Using medical images and tissue mechanical properties, we develop a model of the prostate and surrounding organs. We show that, for needle procedures such as biopsy or brachytherapy, organ geometry and boundary constraints have more impact on target motion than tissue material parameters. Finally, we investigate the effects surgical tool shape on the accuracy of medical intervention planning. We consider the specific case of robotic needle steering, in which asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. We present an analytical and finite element (FE) model for the loads developed at the bevel tip during needle-tissue interaction. The analytical model explains trends observed in the experiments. We incorporated physical parameters (rupture toughness and nonlinear material elasticity) into the FE model that included both contact and cohesive zone models to simulate tissue cleavage. The model shows that the tip forces are sensitive to the rupture toughness. In order to model the mechanics of deflection of the needle, we use an energy-based formulation that incorporates tissue-specific parameters such as rupture toughness, nonlinear material elasticity, and interaction stiffness, and needle geometric and material properties. Simulation results follow similar trends (deflection and radius of curvature) to those observed in macroscopic experimental studies of a robot-driven needle interacting with gels
    corecore