4,974 research outputs found

    An Empirical Evaluation On Vibrotactile Feedback For Wristband System

    Full text link
    With the rapid development of mobile computing, wearable wrist-worn is becoming more and more popular. But the current vibrotactile feedback patterns of most wrist-worn devices are too simple to enable effective interaction in nonvisual scenarios. In this paper, we propose the wristband system with four vibrating motors placed in different positions in the wristband, providing multiple vibration patterns to transmit multi-semantic information for users in eyes-free scenarios. However, we just applied five vibrotactile patterns in experiments (positional up and down, horizontal diagonal, clockwise circular, and total vibration) after contrastive analyzing nine patterns in a pilot experiment. The two experiments with the same 12 participants perform the same experimental process in lab and outdoors. According to the experimental results, users can effectively distinguish the five patterns both in lab and outside, with approximately 90% accuracy (except clockwise circular vibration of outside experiment), proving these five vibration patterns can be used to output multi-semantic information. The system can be applied to eyes-free interaction scenarios for wrist-worn devices.Comment: 10 pages

    Toward a unified PNT, Part 1: Complexity and context: Key challenges of multisensor positioning

    Get PDF
    The next generation of navigation and positioning systems must provide greater accuracy and reliability in a range of challenging environments to meet the needs of a variety of mission-critical applications. No single navigation technology is robust enough to meet these requirements on its own, so a multisensor solution is required. Known environmental features, such as signs, buildings, terrain height variation, and magnetic anomalies, may or may not be available for positioning. The system could be stationary, carried by a pedestrian, or on any type of land, sea, or air vehicle. Furthermore, for many applications, the environment and host behavior are subject to change. A multi-sensor solution is thus required. The expert knowledge problem is compounded by the fact that different modules in an integrated navigation system are often supplied by different organizations, who may be reluctant to share necessary design information if this is considered to be intellectual property that must be protected

    Ubiquitous haptic feedback in human-computer interaction through electrical muscle stimulation

    Get PDF
    [no abstract

    Safe Local Navigation for Visually Impaired Users With a Time-of-Flight and Haptic Feedback Device

    Get PDF
    This paper presents ALVU (Array of Lidars and Vibrotactile Units), a contactless, intuitive, hands-free, and discreet wearable device that allows visually impaired users to detect low- and high-hanging obstacles, as well as physical boundaries in their immediate environment. The solution allows for safe local navigation in both confined and open spaces by enabling the user to distinguish free space from obstacles. The device presented is composed of two parts: a sensor belt and a haptic strap. The sensor belt is an array of time-of-flight distance sensors worn around the front of a user's waist, and the pulses of infrared light provide reliable and accurate measurements of the distances between the user and surrounding obstacles or surfaces. The haptic strap communicates the measured distances through an array of vibratory motors worn around the user's upper abdomen, providing haptic feedback. The linear vibration motors are combined with a point-loaded pretensioned applicator to transmit isolated vibrations to the user. We validated the device's capability in an extensive user study entailing 162 trials with 12 blind users. Users wearing the device successfully walked through hallways, avoided obstacles, and detected staircases.Andrea Bocelli FoundationNational Science Foundation (U.S.) (Grant NSF IIS1226883

    Gait training with haptic feedback assistance

    Get PDF
    Aquest treball serveix com a prova de concepte per desenvolupar un cinturó basat en retroalimentació hàptica per fomentar l'exploració de la marxa humana. La rehabilitació actual i l'entrenament de dispositius assistits depèn de la repetició de moviments invariables. Contràriament, es troben estudis que demostren que entrenar amb una major variabilitat pot millorar l'adquisició d'aprenentatge motor i l'actuació de l'individu durant la realització de noves tasques. En conseqüència, és probable que entrenar l'habilitat de l'usuari per explorar nous moviments sigui beneficiós per poder aprofitar al màxim la tecnologia assistida. El dispositiu presentat en aquest treball de fi de grau fa un seguiment de la seva pròpia posició i, depenent de la seva localització, vibra un dels dos motors vibrotàctils que té instal·lats per tal de notificar a l'usuari. Aquesta investigació serveix com a base per futurament crear un dispositiu que guiarà als usuaris a explorar un rang de moviment més divers i, per tant, executar moviments més variables. La versió futura del dispositiu podria ajudar a persones amb discapacitat a explorar les seves vies de control motor aconseguint així que es puguin adaptar més fàcilment a noves tasques, com per exemple, adaptar-se a portar un exoesquelet.Este trabajo sirve como prueba de concepto para desarrollar un cinturón basado en retroalimentación háptica para fomentar la exploración de la marcha humana. La rehabilitación actual y el entrenamiento de dispositivos asistidos depende de la repetición de movimientos invariables. Por el contrario, existen estudios que demuestran que entrenar con una mayor variabilidad puede mejorar la adquisición de aprendizaje motor y la actuación del individuo durante la realización de nuevas tareas. En consecuencia, es probable que entrenar la habilidad del usuario para explorar nuevos movimientos sea beneficioso para poder aprovechar al máximo la tecnología asistida. El dispositivo presentado en este trabajo de final de grado hace un rastreo de su propia posición y, dependiendo de su localización, vibra uno de los dos motores vibrotáctiles que incorpora con la finalidad de notificar al usuario. Esta investigación sirve como base para futuramente crear un dispositivo que guiará a los usuarios a explorar un rango de movimiento más diverso y, por tanto, ejecutar movimientos más variables. La versión futura del dispositivo podría ayudar a personas con discapacidad a explorar sus vías de control motor, consiguiendo así que se puedan adaptar más fácilmente a nuevas tareas, como por ejemplo, adaptarse al uso de un exoesqueleto.This work serves as a proof of concept for developing a haptic feedback hip belt to encourage gait exploration. Current rehabilitation and assistive device training relies on repeating consistent movements. In contrast, past work has shown that training with increased variability can improve motor learning and performance of new tasks. Consequently, it is likely that training user ability to explore new movements is beneficial to taking full advantage of assistive technology. The device presented in this thesis tracks its own position and, depending on its location, vibrates one of two vibrotactile motors to give instructions to the user. This work serves as a basis for further development of a device that will guide users to explore a more diverse range of motion and to perform variable movements. The future device could help people with disabilities explore their motor control pathways and more easily adapt to novel tasks (such as adapting to an exoskeleton).Outgoin

    Integrating Haptic Feedback into Mobile Location Based Services

    Get PDF
    Haptics is a feedback technology that takes advantage of the human sense of touch by applying forces, vibrations, and/or motions to a haptic-enabled device such as a mobile phone. Historically, human-computer interaction has been visual - text and images on the screen. Haptic feedback can be an important additional method especially in Mobile Location Based Services such as knowledge discovery, pedestrian navigation and notification systems. A knowledge discovery system called the Haptic GeoWand is a low interaction system that allows users to query geo-tagged data around them by using a point-and-scan technique with their mobile device. Haptic Pedestrian is a navigation system for walkers. Four prototypes have been developed classified according to the user’s guidance requirements, the user type (based on spatial skills), and overall system complexity. Haptic Transit is a notification system that provides spatial information to the users of public transport. In all these systems, haptic feedback is used to convey information about location, orientation, density and distance by use of the vibration alarm with varying frequencies and patterns to help understand the physical environment. Trials elicited positive responses from the users who see benefit in being provided with a “heads up” approach to mobile navigation. Results from a memory recall test show that the users of haptic feedback for navigation had better memory recall of the region traversed than the users of landmark images. Haptics integrated into a multi-modal navigation system provides more usable, less distracting but more effective interaction than conventional systems. Enhancements to the current work could include integration of contextual information, detailed large-scale user trials and the exploration of using haptics within confined indoor spaces

    BodySpace: inferring body pose for natural control of a music player

    Get PDF
    We describe the BodySpace system, which uses inertial sensing and pattern recognition to allow the gestural control of a music player by placing the device at different parts of the body. We demonstrate a new approach to the segmentation and recognition of gestures for this kind of application and show how simulated physical model-based techniques can shape gestural interaction
    corecore