319 research outputs found

    Advanced suspension system using magnetorheological technology for vehicle vibration control

    Get PDF
    In the past forty years, the concept of controllable vehicle suspension has attracted extensive attention. Since high price of an active suspension system and deficiencies on a passive suspension, researchers pay a lot attention to semi-active suspension. Magneto-rheological fluid (MRF) is always an ideal material of semi-active structure. Thanks to its outstanding features like large yield stress, fast response time, low energy consumption and significant rheological effect. MR damper gradually becomes a preferred component of semi-active suspension for improving the riding performance of vehicle. However, because of the inherent nonlinear nature of MR damper, one of the challenging aspects of utilizing MR dampers to achieve high levels of performance is the development of an appropriate control strategy that can take advantage of the unique characteristics of MR dampers. This is why this project has studied semi-active MR control technology of vehicle suspensions to improve their performance. Focusing on MR semi-active suspension, the aim of this thesis sought to develop system structure and semi-active control strategy to give a vehicle opportunity to have a better performance on riding comfort. The issues of vibration control of the vehicle suspension were systematically analysed in this project. As a part of this research, a quarter-car test rig was built; the models of suspension and MR damper were established; the optimization work of mechanical structure and controller parameters was conducted to further improve the system performance; an optimized MR damper (OMRD) for a vehicle suspension was designed, fabricated, and tested. To utilize OMRD to achieve higher level of performance, an appropriate semi-active control algorithm, state observer-based Takagi-Sugeno fuzzy controller (SOTSFC), was designed for the semi-active suspension system, and its feasibility was verified through an experiment. Several tests were conducted on the quarter-car suspension to investigate the real effect of this semiactive control by changing suspension damping. In order to further enhance the vibration reduction performance of the vehicle, a fullsize variable stiffness and variable damping (VSVD) suspension was further designed, fabricated, and tested in this project. The suspension can be easily installed into a vehicle suspension system without any change to the original configuration. A new 3- degree of freedom (DOF) phenomenological model to further accurately describe the dynamic characteristic of the VSVD suspension was also presented. Based on a simple on-off controller, the performance of the variable stiffness and damping suspension was verified numerically. In addition, an innovative TS fuzzy modelling based VSVD controller was designed. The TS fuzzy modelling controller includes a skyhook damping control module and a state observer based stiffness control module which considering road dominant frequency in real-time. The performance evaluation of the VSVD control algorithm was based on the quarter-car test rig which equipping the VSVD suspension. The experiment results showed that this strategy increases riding comfort effectively, especially under off-road working condition. The semi-active control system developed in this thesis can be adapted and used on a vehicle suspension in order to better control vibration

    Design an intelligent controller for full vehicle nonlinear active suspension systems

    Get PDF
    The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF) technique to design a robust controller to meet the control objectives. The advantage of this controller is that it can handle the nonlinearities faster than other conventional controllers. The approach of the proposed controller is to minimize the vibrations on each corner of vehicle by supplying control forces to suspension system when travelling on rough road. The other purpose for using the NF controller for vehicle model is to reduce the body inclinations that are made during intensive manoeuvres including braking and cornering. A full vehicle nonlinear active suspension system is introduced and tested. The robustness of the proposed controller is being assessed by comparing with an optimal Fractional Order (FOPID) controller. The results show that the intelligent NF controller has improved the dynamic response measured by decreasing the cost function

    VHDL-AMS based genetic optimisation of fuzzy logic controllers

    No full text
    Purpose – This paper presents a VHDL-AMS based genetic optimisation methodology for fuzzy logic controllers (FLCs) used in complex automotive systems and modelled in mixed physical domains. A case study applying this novel method to an active suspension system has been investigated to obtain a new type of fuzzy logic membership function with irregular shapes optimised for best performance. Design/methodology/approach – The geometrical shapes of the fuzzy logic membership functions are irregular and optimised using a genetic algorithm (GA). In this optimisation technique, VHDL-AMS is used not only for the modelling and simulation of the FLC and its underlying active suspension system but also for the implementation of a parallel GA directly in the system testbench. Findings – Simulation results show that the proposed FLC has superior performance in all test cases to that of existing FLCs that use regular-shape, triangular or trapezoidal membership functions. Research limitations – The test of the FLC has only been done in the simulation stage, no physical prototype has been made. Originality/value – This paper proposes a novel way of improving the FLC’s performance and a new application area for VHDL-AMS

    An adaptive neuro fuzzy hybrid control strategy for a semiactive suspension with magneto rheological damper

    Get PDF
    The main function of a vehicle suspension system is to isolate the vehicle body from external excitation in order to improve passenger comfort and road holding and to stabilise its movement. This paper considers the implementation of an adaptive neuro fuzzy inference system (ANFIS) with a fuzzy hybrid control technique to control a quarter vehicle suspension system with a semiactive magneto rheological (MR) damper. A quarter car suspension model is set up with an MR damper and a semiactive controller consisting of a fuzzy hybrid skyhook-groundhook controller and an ANFIS model is also designed. The fuzzy hybrid controller is used to generate the desired control force, and the ANFIS is designed to model the inverse dynamics of MR damper in order to obtain a desired current. Finally, numerical simulations of the semiactive suspensions with the ANFIS- hybrid controller, the traditional hybrid controller, and passive suspension are compared. The results of simulations show that the proposed ANFIS-hybrid controller provides better isolation performance than the other controllers

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Modeling of Optimized Neuro-Fuzzy Logic Based Active Vibration Control Method for Automotive Suspension

    Get PDF
    In this thesis, an active vibration control system was developed. The control system was developed and tested using a quarter car model of an adaptive suspension system. For active vibration control, an actuator was implemented in addition to the commonly used passive spring damper system. Due to nature of unpredictability of force required two different fuzzy inference system (FIS) were developed for the actuator. First a sequential fuzzy set was built, that resulted lower vertical displacement compared to basic damper spring model, but system had limited effect with disturbances of higher magnitude and continuous vibrations (rough road). To improve the performance of the sequential fuzzy set, the main fuzzy set was improved using an adaptive neuro fuzzy inference system (ANFIS). This model increased the performance substantially, especially for rough road and high magnitude disturbance scenarios. Finally, the suspension’s spring constant and damping co-efficient was optimized using a genetic algorithm to further improve the vibration control properties to achieve a balance of both ride stability and comfort. The final result is improved performance of the suspension system

    Reduction of axis acceleration of quarter car suspension using pneumatic actuator and active force control technique

    Get PDF
    This paper presents the design of a control technique applied to the pneumatic active suspension system of a quarter car model using controller with fuzzy logic embedded in the active force control component. The overall control system is decomposed into two loops. In the main loop the desired force signal is calculated using an active force control strategy with a sugeno fuzzy logic element which is being employed to estimate the mass needed to feed the control loop. A Mamdani fuzzy logic controller is implemented in the outer loop to design a force controller such that the desired force signal is achieved in a robust manner. The resulting control strategy known as fuzzy – active force controller (FLC-AFC) is used to control a nonlinear actuator attached between the sprung mass and the unsprung mass of the quarter car model. The performances of the proposed control method were evaluated and later compared to examine the effectiveness in suppressing the vibration effect of the suspension system. Resulting fuzzy active force control gives better results if compared to the fuzzy logic and the passive suspension system

    A Human Driver Model for Autonomous Lane Changing in Highways: Predictive Fuzzy Markov Game Driving Strategy

    Get PDF
    This study presents an integrated hybrid solution to mandatory lane changing problem to deal with accident avoidance by choosing a safe gap in highway driving. To manage this, a comprehensive treatment to a lane change active safety design is proposed from dynamics, control, and decision making aspects. My effort first goes on driver behaviors and relating human reasoning of threat in driving for modeling a decision making strategy. It consists of two main parts; threat assessment in traffic participants, (TV s) states, and decision making. The first part utilizes an complementary threat assessment of TV s, relative to the subject vehicle, SV , by evaluating the traffic quantities. Then I propose a decision strategy, which is based on Markov decision processes (MDPs) that abstract the traffic environment with a set of actions, transition probabilities, and corresponding utility rewards. Further, the interactions of the TV s are employed to set up a real traffic condition by using game theoretic approach. The question to be addressed here is that how an autonomous vehicle optimally interacts with the surrounding vehicles for a gap selection so that more effective performance of the overall traffic flow can be captured. Finding a safe gap is performed via maximizing an objective function among several candidates. A future prediction engine thus is embedded in the design, which simulates and seeks for a solution such that the objective function is maximized at each time step over a horizon. The combined system therefore forms a predictive fuzzy Markov game (FMG) since it is to perform a predictive interactive driving strategy to avoid accidents for a given traffic environment. I show the effect of interactions in decision making process by proposing both cooperative and non-cooperative Markov game strategies for enhanced traffic safety and mobility. This level is called the higher level controller. I further focus on generating a driver controller to complement the automated car’s safe driving. To compute this, model predictive controller (MPC) is utilized. The success of the combined decision process and trajectory generation is evaluated with a set of different traffic scenarios in dSPACE virtual driving environment. Next, I consider designing an active front steering (AFS) and direct yaw moment control (DYC) as the lower level controller that performs a lane change task with enhanced handling performance in the presence of varying front and rear cornering stiffnesses. I propose a new control scheme that integrates active front steering and the direct yaw moment control to enhance the vehicle handling and stability. I obtain the nonlinear tire forces with Pacejka model, and convert the nonlinear tire stiffnesses to parameter space to design a linear parameter varying controller (LPV) for combined AFS and DYC to perform a commanded lane change task. Further, the nonlinear vehicle lateral dynamics is modeled with Takagi-Sugeno (T-S) framework. A state-feedback fuzzy H∞ controller is designed for both stability and tracking reference. Simulation study confirms that the performance of the proposed methods is quite satisfactory
    corecore