145 research outputs found

    On the Structure of Bispecial Sturmian Words

    Full text link
    A balanced word is one in which any two factors of the same length contain the same number of each letter of the alphabet up to one. Finite binary balanced words are called Sturmian words. A Sturmian word is bispecial if it can be extended to the left and to the right with both letters remaining a Sturmian word. There is a deep relation between bispecial Sturmian words and Christoffel words, that are the digital approximations of Euclidean segments in the plane. In 1997, J. Berstel and A. de Luca proved that \emph{palindromic} bispecial Sturmian words are precisely the maximal internal factors of \emph{primitive} Christoffel words. We extend this result by showing that bispecial Sturmian words are precisely the maximal internal factors of \emph{all} Christoffel words. Our characterization allows us to give an enumerative formula for bispecial Sturmian words. We also investigate the minimal forbidden words for the language of Sturmian words.Comment: arXiv admin note: substantial text overlap with arXiv:1204.167

    A Characterization of Bispecial Sturmian Words

    Full text link
    A finite Sturmian word w over the alphabet {a,b} is left special (resp. right special) if aw and bw (resp. wa and wb) are both Sturmian words. A bispecial Sturmian word is a Sturmian word that is both left and right special. We show as a main result that bispecial Sturmian words are exactly the maximal internal factors of Christoffel words, that are words coding the digital approximations of segments in the Euclidean plane. This result is an extension of the known relation between central words and primitive Christoffel words. Our characterization allows us to give an enumerative formula for bispecial Sturmian words. We also investigate the minimal forbidden words for the set of Sturmian words.Comment: Accepted to MFCS 201

    A Characterization of Infinite LSP Words

    Full text link
    G. Fici proved that a finite word has a minimal suffix automaton if and only if all its left special factors occur as prefixes. He called LSP all finite and infinite words having this latter property. We characterize here infinite LSP words in terms of SS-adicity. More precisely we provide a finite set of morphisms SS and an automaton A{\cal A} such that an infinite word is LSP if and only if it is SS-adic and all its directive words are recognizable by A{\cal A}

    The sequence of open and closed prefixes of a Sturmian word

    Full text link
    A finite word is closed if it contains a factor that occurs both as a prefix and as a suffix but does not have internal occurrences, otherwise it is open. We are interested in the {\it oc-sequence} of a word, which is the binary sequence whose nn-th element is 00 if the prefix of length nn of the word is open, or 11 if it is closed. We exhibit results showing that this sequence is deeply related to the combinatorial and periodic structure of a word. In the case of Sturmian words, we show that these are uniquely determined (up to renaming letters) by their oc-sequence. Moreover, we prove that the class of finite Sturmian words is a maximal element with this property in the class of binary factorial languages. We then discuss several aspects of Sturmian words that can be expressed through this sequence. Finally, we provide a linear-time algorithm that computes the oc-sequence of a finite word, and a linear-time algorithm that reconstructs a finite Sturmian word from its oc-sequence.Comment: Published in Advances in Applied Mathematics. Journal version of arXiv:1306.225

    Characterizations of finite and infinite episturmian words via lexicographic orderings

    Get PDF
    In this paper, we characterize by lexicographic order all finite Sturmian and episturmian words, i.e., all (finite) factors of such infinite words. Consequently, we obtain a characterization of infinite episturmian words in a "wide sense" (episturmian and episkew infinite words). That is, we characterize the set of all infinite words whose factors are (finite) episturmian. Similarly, we characterize by lexicographic order all balanced infinite words over a 2-letter alphabet; in other words, all Sturmian and skew infinite words, the factors of which are (finite) Sturmian.Comment: 18 pages; to appear in the European Journal of Combinatoric

    Representations of Circular Words

    Full text link
    In this article we give two different ways of representations of circular words. Representations with tuples are intended as a compact notation, while representations with trees give a way to easily process all conjugates of a word. The latter form can also be used as a graphical representation of periodic properties of finite (in some cases, infinite) words. We also define iterative representations which can be seen as an encoding utilizing the flexible properties of circular words. Every word over the two letter alphabet can be constructed starting from ab by applying the fractional power and the cyclic shift operators one after the other, iteratively.Comment: In Proceedings AFL 2014, arXiv:1405.527

    A Coloring Problem for Infinite Words

    Full text link
    In this paper we consider the following question in the spirit of Ramsey theory: Given xAω,x\in A^\omega, where AA is a finite non-empty set, does there exist a finite coloring of the non-empty factors of xx with the property that no factorization of xx is monochromatic? We prove that this question has a positive answer using two colors for almost all words relative to the standard Bernoulli measure on Aω.A^\omega. We also show that it has a positive answer for various classes of uniformly recurrent words, including all aperiodic balanced words, and all words xAωx\in A^\omega satisfying λx(n+1)λx(n)=1\lambda_x(n+1)-\lambda_x(n)=1 for all nn sufficiently large, where λx(n) \lambda_x(n) denotes the number of distinct factors of xx of length n.n.Comment: arXiv admin note: incorporates 1301.526
    corecore