612 research outputs found

    Contour regression: A general approach to dimension reduction

    Full text link
    We propose a novel approach to sufficient dimension reduction in regression, based on estimating contour directions of small variation in the response. These directions span the orthogonal complement of the minimal space relevant for the regression and can be extracted according to two measures of variation in the response, leading to simple and general contour regression (SCR and GCR) methodology. In comparison with existing sufficient dimension reduction techniques, this contour-based methodology guarantees exhaustive estimation of the central subspace under ellipticity of the predictor distribution and mild additional assumptions, while maintaining \sqrtn-consistency and computational ease. Moreover, it proves robust to departures from ellipticity. We establish population properties for both SCR and GCR, and asymptotic properties for SCR. Simulations to compare performance with that of standard techniques such as ordinary least squares, sliced inverse regression, principal Hessian directions and sliced average variance estimation confirm the advantages anticipated by the theoretical analyses. We demonstrate the use of contour-based methods on a data set concerning soil evaporation.Comment: Published at http://dx.doi.org/10.1214/009053605000000192 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Sparse Fr\'echet Sufficient Dimension Reduction with Graphical Structure Among Predictors

    Full text link
    Fr\'echet regression has received considerable attention to model metric-space valued responses that are complex and non-Euclidean data, such as probability distributions and vectors on the unit sphere. However, existing Fr\'echet regression literature focuses on the classical setting where the predictor dimension is fixed, and the sample size goes to infinity. This paper proposes sparse Fr\'echet sufficient dimension reduction with graphical structure among high-dimensional Euclidean predictors. In particular, we propose a convex optimization problem that leverages the graphical information among predictors and avoids inverting the high-dimensional covariance matrix. We also provide the Alternating Direction Method of Multipliers (ADMM) algorithm to solve the optimization problem. Theoretically, the proposed method achieves subspace estimation and variable selection consistency under suitable conditions. Extensive simulations and a real data analysis are carried out to illustrate the finite-sample performance of the proposed method
    • …
    corecore