280 research outputs found

    On duality in problems of optimal control described by convex differential inclusions of Goursat–Darboux type

    Get PDF
    AbstractSufficient conditions of optimality are derived for convex and non-convex problems with state constraints on the basis of the apparatus of locally conjugate mappings. The duality theorem is formulated and the conditions under which the direct and dual problems are connected by the duality relation are searched for

    Approximation and optimization of discrete and differential inclusions

    Get PDF
    [No abstract available]Publisher's Versio

    Maximum Principle for Linear-Convex Boundary Control Problems applied to Optimal Investment with Vintage Capital

    Full text link
    The paper concerns the study of the Pontryagin Maximum Principle for an infinite dimensional and infinite horizon boundary control problem for linear partial differential equations. The optimal control model has already been studied both in finite and infinite horizon with Dynamic Programming methods in a series of papers by the same author, or by Faggian and Gozzi. Necessary and sufficient optimality conditions for open loop controls are established. Moreover the co-state variable is shown to coincide with the spatial gradient of the value function evaluated along the trajectory of the system, creating a parallel between Maximum Principle and Dynamic Programming. The abstract model applies, as recalled in one of the first sections, to optimal investment with vintage capital

    Stochastic maximum principle for optimal control of a class of nonlinear SPDEs with dissipative drift

    Full text link
    We prove a version of the stochastic maximum principle, in the sense of Pontryagin, for the finite horizon optimal control of a stochastic partial differential equation driven by an infinite dimensional additive noise. In particular we treat the case in which the non-linear term is of Nemytskii type, dissipative and with polynomial growth. The performance functional to be optimized is fairly general and may depend on point evaluation of the controlled equation. The results can be applied to a large class of non-linear parabolic equations such as reaction-diffusion equations

    Optimal distributed control of a stochastic Cahn-Hilliard equation

    Get PDF
    We study an optimal distributed control problem associated to a stochastic Cahn-Hilliard equation with a classical double-well potential and Wiener multiplicative noise, where the control is represented by a source-term in the definition of the chemical potential. By means of probabilistic and analytical compactness arguments, existence of an optimal control is proved. Then the linearized system and the corresponding backward adjoint system are analysed through monotonicity and compactness arguments, and first-order necessary conditions for optimality are proved.Comment: Key words and phrases: stochastic Cahn-Hilliard equation, phase separation, optimal control, linearized state system, adjoint state system, first-order optimality condition
    corecore