271 research outputs found

    Visibility maintenance via controlled invariance for leader-follower Dubins-like vehicles

    Full text link
    The paper studies the visibility maintenance problem (VMP) for a leader-follower pair of Dubins-like vehicles with input constraints, and proposes an original solution based on the notion of controlled invariance. The nonlinear model describing the relative dynamics of the vehicles is interpreted as linear uncertain system, with the leader robot acting as an external disturbance. The VMP is then reformulated as a linear constrained regulation problem with additive disturbances (DLCRP). Positive D-invariance conditions for linear uncertain systems with parametric disturbance matrix are introduced and used to solve the VMP when box bounds on the state, control input and disturbance are considered. The proposed design procedure is shown to be easily adaptable to more general working scenarios. Extensive simulation results are provided to illustrate the theory and show the effectiveness of our approachComment: 17 pages, 24 figures, extended version of the journal paper of the authors submitted to Automatic

    Decentralized navigation and collision avoidance for robotic swarm with heterogeneous abilities

    Get PDF
    This paper proposes a decentralized navigation method with collision avoidance for a robotic swarm whose individuals possess heterogeneous abilities, such as sensing range and maximum speed. In this method, each agent distributedly constructs and maintains a local directed connection with another agent using only local information, which is relative distance. Moreover, all agents always maintain some distance from other agents to avoid collision. As a result, one leader robot can guide an entire swarm of robots to their destination, and the other robots can follow the leader while maintaining connectivity and not colliding with others. We prove the above mathematically, and we demonstrate the validity of the proposed method by numerical simulation and experimentation

    An Overview of Recent Progress in the Study of Distributed Multi-agent Coordination

    Get PDF
    This article reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles and unmanned underwater vehicles, has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions, such as consensus, formation control, optimization, task assignment, and estimation. After the review, a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Distributed formation control with time and connectivity constraints

    Get PDF
    [Abstract] In this paper, we propose a distributed control law for non-holonomic vehicles that guarantees to achieve the desired formation and location before a given deadline, while maintaining the connectivity of the group. The group is commanded by a a selected subset of the agents, which know the location of the desired objective, while the rest of the vehicles only have information about their relative desired positions respect their set of neighbors. The analytical results are illustrated with a simulation example.[Resumen] En este documento, proponemos una ley de control distribuido para vehículos no holonómicos que garantiza alcanzar la formación y ubicación deseadas antes de un plazo determinado, mientras se mantiene la conectividad del grupo. El grupo está comandado por un subconjunto seleccionado de agentes, que conocen la ubicación del objetivo deseado, mientras que el resto de los vehículos solo tienen información sobre sus posiciones relativas deseadas con respecto a su conjunto de vecinos. Los resultados analíticos se ilustran con un ejemplo de simulación
    corecore