371 research outputs found

    Stackelberg strategies in linear-quadratic stochastic differential games

    Get PDF
    This paper obtains the Stackelberg solution to a class of two-player stochastic differential games described by linear state dynamics and quadratic objective functionals. The information structure of the problem is such that the players make independent noisy measurements of the initial state and are permitted to utilize only this information in constructing their controls. Furthermore, by the very nature of the Stackelberg solution concept, one of the players is assumed to know, in advance, the strategy of the other player (the leader). For this class of problems, we first establish existence and uniqueness of the Stackelberg solution and then relate the derivation of the leader's Stackelberg solution to the optimal solution of a nonstandard stochastic control problem. This stochastic control problem is solved in a more general context, and its solution is utilized in constructing the Stackelberg strategy of the leader. For the special case Gaussian statistics, it is shown that this optimal strategy is affine in observation of the leader. The paper also discusses numerical aspects of the Stackelberg solution under general statistics and develops algorithms which converge to the unique Stackelberg solution

    A Hierarchical Game with Strategy Evolution for Mobile Sponsored Content and Service Markets

    Full text link
    In sponsored content and service markets, the content and service providers are able to subsidize their target mobile users through directly paying the mobile network operator, to lower the price of the data/service access charged by the network operator to the mobile users. The sponsoring mechanism leads to a surge in mobile data and service demand, which in return compensates for the sponsoring cost and benefits the content/service providers. In this paper, we study the interactions among the three parties in the market, namely, the mobile users, the content/service providers and the network operator, as a two-level game with multiple Stackelberg (i.e., leader) players. Our study is featured by the consideration of global network effects owning to consumers' grouping. Since the mobile users may have bounded rationality, we model the service-selection process among them as an evolutionary-population follower sub-game. Meanwhile, we model the pricing-then-sponsoring process between the content/service providers and the network operator as a non-cooperative equilibrium searching problem. By investigating the structure of the proposed game, we reveal a few important properties regarding the equilibrium existence, and propose a distributed, projection-based algorithm for iterative equilibrium searching. Simulation results validate the convergence of the proposed algorithm, and demonstrate how sponsoring helps improve both the providers' profits and the users' experience

    Closed-Loop Solvability of Linear Quadratic Mean-Field Type Stackelberg Stochastic Differential Games

    Full text link
    This paper is devoted to a Stackelberg stochastic differential game for a linear mean-field type stochastic differential system with a mean-field type quadratic cost functional in finite horizon. The coefficients in the state equation and weighting matrices in the cost functional are all deterministic. Closed-loop Stackelberg equilibrium strategies are introduced which require to be independent of initial states. Follower's problem is solved firstly, which is a stochastic linear quadratic optimal control problem. By converting the original problem into a new one whose optimal control is known, the closed-loop optimal strategy of the follower is characterized by two coupled Riccati equations as well as a linear mean-field type backward stochastic differential equation. Then the leader turns to solve a stochastic linear quadratic optimal control problem for a mean-field type forward-backward stochastic differential equation. Necessary conditions for the existence of closed-loop optimal strategies for the leader is given by the existence of two coupled Riccati equations with a linear mean-field type backward stochastic differential equation. The solvability of Riccati equations of leader's optimization problem is discussed in the case where the diffusion term of the state equation does not contain the control process of the follower. Moreover, leader's value function is expressed via two backward stochastic differential equations and two Lyapunov equations.Comment: 44 page
    • …
    corecore