36 research outputs found

    New Optimal Approach for the Identification of Takagi-Sugeno Fuzzy Model

    Full text link
    A novel optimal method is developed to improve the identification and estimation of Takagi-Sugeno (TS) fuzzy model. The idea comes from the fact that the main drawback of T-S model is that it can not be applied when the membership functions are overlapped by pairs. This limits the application of the T-S model because this type of membership function has been widely used in the stability and controller design of fuzzy systems. It is also very popular in industrial control applications. The method presented here can be considered as a generalized version of T-S fuzzy model with optimized performance in approximating nonlinear functions. Various examples are chosen to show the high function approximation accuracy and fast convergence obtained by applying the proposed method in approximating nonlinear systems locally and globally in comparison with the original T-S model

    An Optimal T-S Model for the Estimation and Identification of Nonlinear Functions

    Get PDF
    A novel optimal method is developed to improve the identification and estimation of Takagi-Sugeno (TS) fuzzy model. The idea comes from the fact that the main drawback of T-S model is that it can not be applied when the membership functions are overlapped by pairs. This limits the application of the T-S model because this type of membership function has been widely used in the stability and controller design of fuzzy systems. It is also very popular in industrial control applications. The method presented here can be considered as a generalized version of T-S fuzzy model with optimized performance in approximating nonlinear functions. Various examples are chosen to show the high function approximation accuracy and fast convergence obtained by applying the proposed method in approximating nonlinear systems locally and globally in comparison with the original T-S model

    A new approach to fuzzy estimation of Takagi-Sugeno model and its applications to optimal control for nonlinear systems

    Get PDF
    An efficient approach is presented to improve the local and global approximation and modelling capability of Takagi-Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy. The main problem is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the use of the T-S method because this type of membership function has been widely used during the last two decades in the stability, controller design and are popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S method with optimized performance in approximating nonlinear functions. A simple approach with few computational effort, based on the well known parameters' weighting method is suggested for tuning T-S parameters to improve the choice of the performance index and minimize it. A global fuzzy controller (FC) based Linear Quadratic Regulator (LQR) is proposed in order to show the effectiveness of the estimation method developed here in control applications. Illustrative examples of an inverted pendulum and Van der Pol system are chosen to evaluate the robustness and remarkable performance of the proposed method and the high accuracy obtained in approximating nonlinear and unstable systems locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the algorithm

    Improvement of Takagi-Sugeno Fuzzy Model for the Estimation of Nonlinear Functions

    Get PDF
    Two new and efficient approaches are presented to improve the local and global estimation of the Takagi-Sugeno (T-S) fuzzy model. The main aim is to obtain high function approximation accuracy and fast convergence. The main problem is that the T-S identification method can not be applied when the membership functions are overlapped by pairs. The approaches developed here can be considered as generalized versions of T-S method with optimized performance. The first uses the minimum norm approach to search for an exact optimum solution at the expense of increasing complexity and computational cost. The second is a simple and less computational method, based on weighting of parameters. Illustrative examples are chosen to evaluate the potential, simplicity and remarkable performance of the proposed methods and the high accuracy obtained in comparison with the original T-S model

    Monitoring of Tool Wear and Surface Roughness Using ANFIS Method During CNC Turning of CFRP Composite

    Get PDF
    Carbon fiber-reinforced plastic (CFRP) is gaining wide acceptance in areas including sports, aerospace and automobile industry . Because of its superior mechanical qualities and lower weight than metals, it needs effective and efficient machining methods. In this study, the relationship between the cutting parameters (Speed, Feed, Depth of Cut) and response parameters (Vibration, Surface Finish, Cutting Force and Tool Wear) are investigated for CFRP composite. For machining of CFRP, CNC turning operation with coated carbide tool is used. An ANFIS model with two MISO system has been developed to predict the tool wear and surface finish. Speed, feed, depth of cut, vibration and cutting force have been used as input parameters and tool wear and surface finish have been used as output parameter. Three sets of cutting parameter have been used to gather the data points for continuous turning of CFRP composite. The model merged fuzzy inference modeling with artificial neural network learning abilities, and a set of rules is constructed directly from experimental data. However, Design of Experiments (DOE) confirmation of this experiment fails because of multi-collinearity problem in the dataset and insufficient experimental data points to predict the tool wear and surface roughness effectively using ANFIS methodology. Therefore, the result of this experiment do not provide a proper representation, and result in a failure to conform to a correct DOE approach

    Advanced control designs for output tracking of hydrostatic transmissions

    Get PDF
    The work addresses simple but efficient model descriptions in a combination with advanced control and estimation approaches to achieve an accurate tracking of the desired trajectories. The proposed control designs are capable of fully exploiting the wide operation range of HSTs within the system configuration limits. A new trajectory planning scheme for the output tracking that uses both the primary and secondary control inputs was developed. Simple models or even purely data-driven models are envisaged and deployed to develop several advanced control approaches for HST systems

    Control of Real Mobile Robot Using Artificial Intelligence Technique

    Get PDF
    An eventual objective of mobile robotics research is to bestow the robot with high cerebral skill, of which navigation in an unfamiliar environment can be succeeded by using on‐line sensory information, which is essentially starved of humanoid intermediation. This research emphases on mechanical design of real mobile robot, its kinematic & dynamic model analysis and selection of AI technique based on perception, cognition, sensor fusion, path scheduling and analysis, which has to be implemented in robot for achieving integration of different preliminary robotic behaviors (e.g. obstacle avoidance, wall and edge following, escaping dead end and target seeking). Navigational paths as well as time taken during navigation by the mobile robot can be expressed as an optimization problem and thus can be analyzed and solved using AI techniques. The optimization of path as well as time taken is based on the kinematic stability and the intelligence of the robot controller. A set of linguistic fuzzy rules are developed to implement expert knowledge under various situations. Both of Mamdani and Takagi-Sugeno fuzzy model are employed in control algorithm for experimental purpose. Neural network has also been used to enhance and optimize the outcome of controller, e.g. by introducing a learning ability. The cohesive framework combining both fuzzy inference system and neural network enabled mobile robot to generate reasonable trajectories towards the target. An authenticity checking has been done by performing simulation as well as experimental results which showed that the mobile robot is capable of avoiding stationary obstacles, escaping traps, and reaching the goal efficiently

    Fuzzy Controllers

    Get PDF
    Trying to meet the requirements in the field, present book treats different fuzzy control architectures both in terms of the theoretical design and in terms of comparative validation studies in various applications, numerically simulated or experimentally developed. Through the subject matter and through the inter and multidisciplinary content, this book is addressed mainly to the researchers, doctoral students and students interested in developing new applications of intelligent control, but also to the people who want to become familiar with the control concepts based on fuzzy techniques. Bibliographic resources used to perform the work includes books and articles of present interest in the field, published in prestigious journals and publishing houses, and websites dedicated to various applications of fuzzy control. Its structure and the presented studies include the book in the category of those who make a direct connection between theoretical developments and practical applications, thereby constituting a real support for the specialists in artificial intelligence, modelling and control fields

    Fuzzy model predictive control. Complexity reduction by functional principal component analysis

    Get PDF
    En el Control Predictivo basado en Modelo, el controlador ejecuta una optimización en tiempo real para obtener la mejor solución para la acción de control. Un problema de optimización se resuelve para identificar la mejor acción de control que minimiza una función de coste relacionada con las predicciones de proceso. Debido a la carga computacional de los algoritmos, el control predictivo sujeto a restricciones, no es adecuado para funcionar en cualquier plataforma de hardware. Las técnicas de control predictivo son bien conocidos en la industria de proceso durante décadas. Es cada vez más atractiva la aplicación de técnicas de control avanzadas basadas en modelos a otros muchos campos tales como la automatización de edificios, los teléfonos inteligentes, redes de sensores inalámbricos, etc., donde las plataformas de hardware nunca se han conocido por tener una elevada potencia de cálculo. El objetivo principal de esta tesis es establecer una metodología para reducir la complejidad de cálculo al aplicar control predictivo basado en modelos no lineales sujetos a restricciones, utilizando como plataforma, sistemas de hardware de baja potencia de cálculo, permitiendo una implementación basado en estándares de la industria. La metodología se basa en la aplicación del análisis de componentes principales funcionales, proporcionando un enfoque matemáticamente elegante para reducir la complejidad de los sistemas basados en reglas, como los sistemas borrosos y los sistemas lineales a trozos. Lo que permite reducir la carga computacional en el control predictivo basado en modelos, sujetos o no a restricciones. La idea de utilizar sistemas de inferencia borrosos, además de permitir el modelado de sistemas no lineales o complejos, dota de una estructura formal que permite la implementación de la técnica de reducción de la complejidad mencionada anteriormente. En esta tesis, además de las contribuciones teóricas, se describe el trabajo realizado con plantas reales en los que se han llevado a cabo tareas de modelado y control borroso. Uno de los objetivos a cubrir en el período de la investigación y el desarrollo de la tesis ha sido la experimentación con sistemas borrosos, su simplificación y aplicación a sistemas industriales. La tesis proporciona un marco de conocimiento práctico, basado en la experiencia.In Model-based Predictive Control, the controller runs a real-time optimisation to obtain the best solution for the control action. An optimisation problem is solved to identify the best control action that minimises a cost function related to the process predictions. Due to the computational load of the algorithms, predictive control subject to restric- tions is not suitable to run on any hardware platform. Predictive control techniques have been well known in the process industry for decades. The application of advanced control techniques based on models is becoming increasingly attractive in other fields such as building automation, smart phones, wireless sensor networks, etc., as the hardware platforms have never been known to have high computing power. The main purpose of this thesis is to establish a methodology to reduce the computational complexity of applying nonlinear model based predictive control systems subject to constraints, using as a platform hardware systems with low computational power, allowing a realistic implementation based on industry standards. The methodology is based on applying the functional principal component analysis, providing a mathematically elegant approach to reduce the complexity of rule-based systems, like fuzzy and piece wise affine systems, allowing the reduction of the computational load on modelbased predictive control systems, subject or not subject to constraints. The idea of using fuzzy inference systems, in addition to allowing nonlinear or complex systems modelling, endows a formal structure which enables implementation of the aforementioned complexity reduction technique. This thesis, in addition to theoretical contributions, describes the work done with real plants on which tasks of modeling and fuzzy control have been carried out. One of the objectives to be covered for the period of research and development of the thesis has been training with fuzzy systems and their simplification and application to industrial systems. The thesis provides a practical knowledge framework, based on experience
    corecore