1,088 research outputs found

    Euclidean Greedy Drawings of Trees

    Full text link
    Greedy embedding (or drawing) is a simple and efficient strategy to route messages in wireless sensor networks. For each source-destination pair of nodes s, t in a greedy embedding there is always a neighbor u of s that is closer to t according to some distance metric. The existence of greedy embeddings in the Euclidean plane R^2 is known for certain graph classes such as 3-connected planar graphs. We completely characterize the trees that admit a greedy embedding in R^2. This answers a question by Angelini et al. (Graph Drawing 2009) and is a further step in characterizing the graphs that admit Euclidean greedy embeddings.Comment: Expanded version of a paper to appear in the 21st European Symposium on Algorithms (ESA 2013). 24 pages, 20 figure

    On Planar Greedy Drawings of 3-Connected Planar Graphs

    Get PDF
    A graph drawing is greedy if, for every ordered pair of vertices (x,y), there is a path from x to y such that the Euclidean distance to y decreases monotonically at every vertex of the path. Greedy drawings support a simple geometric routing scheme, in which any node that has to send a packet to a destination "greedily" forwards the packet to any neighbor that is closer to the destination than itself, according to the Euclidean distance in the drawing. In a greedy drawing such a neighbor always exists and hence this routing scheme is guaranteed to succeed. In 2004 Papadimitriou and Ratajczak stated two conjectures related to greedy drawings. The greedy embedding conjecture states that every 3-connected planar graph admits a greedy drawing. The convex greedy embedding conjecture asserts that every 3-connected planar graph admits a planar greedy drawing in which the faces are delimited by convex polygons. In 2008 the greedy embedding conjecture was settled in the positive by Leighton and Moitra. In this paper we prove that every 3-connected planar graph admits a planar greedy drawing. Apart from being a strengthening of Leighton and Moitra\u27s result, this theorem constitutes a natural intermediate step towards a proof of the convex greedy embedding conjecture

    On the Area Requirements of Planar Greedy Drawings of Triconnected Planar Graphs

    Full text link
    In this paper we study the area requirements of planar greedy drawings of triconnected planar graphs. Cao, Strelzoff, and Sun exhibited a family H\cal H of subdivisions of triconnected plane graphs and claimed that every planar greedy drawing of the graphs in H\mathcal H respecting the prescribed plane embedding requires exponential area. However, we show that every nn-vertex graph in H\cal H actually has a planar greedy drawing respecting the prescribed plane embedding on an O(n)×O(n)O(n)\times O(n) grid. This reopens the question whether triconnected planar graphs admit planar greedy drawings on a polynomial-size grid. Further, we provide evidence for a positive answer to the above question by proving that every nn-vertex Halin graph admits a planar greedy drawing on an O(n)×O(n)O(n)\times O(n) grid. Both such results are obtained by actually constructing drawings that are convex and angle-monotone. Finally, we consider α\alpha-Schnyder drawings, which are angle-monotone and hence greedy if α≀30∘\alpha\leq 30^\circ, and show that there exist planar triangulations for which every α\alpha-Schnyder drawing with a fixed α<60∘\alpha<60^\circ requires exponential area for any resolution rule

    Drawing Graphs as Spanners

    Full text link
    We study the problem of embedding graphs in the plane as good geometric spanners. That is, for a graph GG, the goal is to construct a straight-line drawing Γ\Gamma of GG in the plane such that, for any two vertices uu and vv of GG, the ratio between the minimum length of any path from uu to vv and the Euclidean distance between uu and vv is small. The maximum such ratio, over all pairs of vertices of GG, is the spanning ratio of Γ\Gamma. First, we show that deciding whether a graph admits a straight-line drawing with spanning ratio 11, a proper straight-line drawing with spanning ratio 11, and a planar straight-line drawing with spanning ratio 11 are NP-complete, ∃R\exists \mathbb R-complete, and linear-time solvable problems, respectively, where a drawing is proper if no two vertices overlap and no edge overlaps a vertex. Second, we show that moving from spanning ratio 11 to spanning ratio 1+Ï”1+\epsilon allows us to draw every graph. Namely, we prove that, for every Ï”>0\epsilon>0, every (planar) graph admits a proper (resp. planar) straight-line drawing with spanning ratio smaller than 1+Ï”1+\epsilon. Third, our drawings with spanning ratio smaller than 1+Ï”1+\epsilon have large edge-length ratio, that is, the ratio between the length of the longest edge and the length of the shortest edge is exponential. We show that this is sometimes unavoidable. More generally, we identify having bounded toughness as the criterion that distinguishes graphs that admit straight-line drawings with constant spanning ratio and polynomial edge-length ratio from graphs that require exponential edge-length ratio in any straight-line drawing with constant spanning ratio

    Graph Embeddings Motivated by Greedy Routing

    Get PDF

    Some Results on Greedy Embeddings in Metric Spaces

    Get PDF
    Geographic Routing is a family of routing algorithms that uses geographic point locations as addresses for the purposes of routing. Such routing algorithms have proven to be both simple to implement and heuristically effective when applied to wireless sensor networks. Greedy Routing is a natural abstraction of this model in which nodes are assigned virtual coordinates in a metric space, and these coordinates are used to perform point-to-point routing. Here we resolve a conjecture of Papadimitriou and Ratajczak that every 3-connected planar graph admits a greedy embedding into the Euclidean plane. This immediately implies that all 3-connected graphs that exclude K 3,3 as a minor admit a greedy embedding into the Euclidean plane. We also prove a combinatorial condition that guarantees nonembeddability. We use this result to construct graphs that can be greedily embedded into the Euclidean plane, but for which no spanning tree admits such an embedding.Massachusetts Institute of Technology ((Akamai) Presidential Fellowship

    Schnyder woods for higher genus triangulated surfaces, with applications to encoding

    Full text link
    Schnyder woods are a well-known combinatorial structure for plane triangulations, which yields a decomposition into 3 spanning trees. We extend here definitions and algorithms for Schnyder woods to closed orientable surfaces of arbitrary genus. In particular, we describe a method to traverse a triangulation of genus gg and compute a so-called gg-Schnyder wood on the way. As an application, we give a procedure to encode a triangulation of genus gg and nn vertices in 4n+O(glog⁥(n))4n+O(g \log(n)) bits. This matches the worst-case encoding rate of Edgebreaker in positive genus. All the algorithms presented here have execution time O((n+g)g)O((n+g)g), hence are linear when the genus is fixed.Comment: 27 pages, to appear in a special issue of Discrete and Computational Geometr
    • 

    corecore