1,172 research outputs found

    Building Program Vector Representations for Deep Learning

    Full text link
    Deep learning has made significant breakthroughs in various fields of artificial intelligence. Advantages of deep learning include the ability to capture highly complicated features, weak involvement of human engineering, etc. However, it is still virtually impossible to use deep learning to analyze programs since deep architectures cannot be trained effectively with pure back propagation. In this pioneering paper, we propose the "coding criterion" to build program vector representations, which are the premise of deep learning for program analysis. Our representation learning approach directly makes deep learning a reality in this new field. We evaluate the learned vector representations both qualitatively and quantitatively. We conclude, based on the experiments, the coding criterion is successful in building program representations. To evaluate whether deep learning is beneficial for program analysis, we feed the representations to deep neural networks, and achieve higher accuracy in the program classification task than "shallow" methods, such as logistic regression and the support vector machine. This result confirms the feasibility of deep learning to analyze programs. It also gives primary evidence of its success in this new field. We believe deep learning will become an outstanding technique for program analysis in the near future.Comment: This paper was submitted to ICSE'1

    Label-Descriptive Patterns and their Application to Characterizing Classification Errors

    Get PDF
    State-of-the-art deep learning methods achieve human-like performance on many tasks, but make errors nevertheless. Characterizing these errors in easily interpretable terms gives insight into whether a model is prone to making systematic errors, but also gives a way to act and improve the model. In this paper we propose a method that allows us to do so for arbitrary classifiers by mining a small set of patterns that together succinctly describe the input data that is partitioned according to correctness of prediction. We show this is an instance of the more general label description problem, which we formulate in terms of the Minimum Description Length principle. To discover good pattern sets we propose the efficient and hyperparameter-free Premise algorithm, which through an extensive set of experiments we show on both synthetic and real-world data performs very well in practice; unlike existing solutions it ably recovers ground truth patterns, even on highly imbalanced data over many unique items, or where patterns are only weakly associated to labels. Through two real-world case studies we confirm that Premise gives clear and actionable insight into the systematic errors made by modern NLP classifiers

    Extracting corpus specific knowledge bases from Wikipedia

    Get PDF
    Thesauri are useful knowledge structures for assisting information retrieval. Yet their production is labor-intensive, and few domains have comprehensive thesauri that cover domain-specific concepts and contemporary usage. One approach, which has been attempted without much success for decades, is to seek statistical natural language processing algorithms that work on free text. Instead, we propose to replace costly professional indexers with thousands of dedicated amateur volunteers--namely, those that are producing Wikipedia. This vast, open encyclopedia represents a rich tapestry of topics and semantics and a huge investment of human effort and judgment. We show how this can be directly exploited to provide WikiSauri: manually-defined yet inexpensive thesaurus structures that are specifically tailored to expose the topics, terminology and semantics of individual document collections. We also offer concrete evidence of the effectiveness of WikiSauri for assisting information retrieval

    TrIMS: Transparent and Isolated Model Sharing for Low Latency Deep LearningInference in Function as a Service Environments

    Full text link
    Deep neural networks (DNNs) have become core computation components within low latency Function as a Service (FaaS) prediction pipelines: including image recognition, object detection, natural language processing, speech synthesis, and personalized recommendation pipelines. Cloud computing, as the de-facto backbone of modern computing infrastructure for both enterprise and consumer applications, has to be able to handle user-defined pipelines of diverse DNN inference workloads while maintaining isolation and latency guarantees, and minimizing resource waste. The current solution for guaranteeing isolation within FaaS is suboptimal -- suffering from "cold start" latency. A major cause of such inefficiency is the need to move large amount of model data within and across servers. We propose TrIMS as a novel solution to address these issues. Our proposed solution consists of a persistent model store across the GPU, CPU, local storage, and cloud storage hierarchy, an efficient resource management layer that provides isolation, and a succinct set of application APIs and container technologies for easy and transparent integration with FaaS, Deep Learning (DL) frameworks, and user code. We demonstrate our solution by interfacing TrIMS with the Apache MXNet framework and demonstrate up to 24x speedup in latency for image classification models and up to 210x speedup for large models. We achieve up to 8x system throughput improvement.Comment: In Proceedings CLOUD 201
    • 

    corecore