6,713 research outputs found

    Model-checking for successor-invariant first-order formulas on graph classes of bounded expansion

    Get PDF
    A successor-invariant first-order formula is a formula that has access to an auxiliary successor relation on a structure's universe, but the model relation is independent of the particular interpretation of this relation. It is well known that successor-invariant formulas are more expressive on finite structures than plain first-order formulas without a successor relation. This naturally raises the question whether this increase in expressive power comes at an extra cost to solve the model-checking problem, that is, the problem to decide whether a given structure together with some (and hence every) successor relation is a model of a given formula. It was shown earlier that adding successor-invariance to first-order logic essentially comes at no extra cost for the model-checking problem on classes of finite structures whose underlying Gaifman graph is planar [1], excludes a fixed minor [2] or a fixed topological minor [3], [4]. In this work we show that the model-checking problem for successor-invariant formulas is fixed-parameter tractable on any class of finite structures whose underlying Gaifman graphs form a class of bounded expansion. Our result generalises all earlier results and comes close to the best tractability results on nowhere dense classes of graphs currently known for plain first-order logic

    Model-Checking on Ordered Structures

    Full text link
    We study the model-checking problem for first- and monadic second-order logic on finite relational structures. The problem of verifying whether a formula of these logics is true on a given structure is considered intractable in general, but it does become tractable on interesting classes of structures, such as on classes whose Gaifman graphs have bounded treewidth. In this paper we continue this line of research and study model-checking for first- and monadic second-order logic in the presence of an ordering on the input structure. We do so in two settings: the general ordered case, where the input structures are equipped with a fixed order or successor relation, and the order invariant case, where the formulas may resort to an ordering, but their truth must be independent of the particular choice of order. In the first setting we show very strong intractability results for most interesting classes of structures. In contrast, in the order invariant case we obtain tractability results for order-invariant monadic second-order formulas on the same classes of graphs as in the unordered case. For first-order logic, we obtain tractability of successor-invariant formulas on classes whose Gaifman graphs have bounded expansion. Furthermore, we show that model-checking for order-invariant first-order formulas is tractable on coloured posets of bounded width.Comment: arXiv admin note: substantial text overlap with arXiv:1701.0851

    Successor-Invariant First-Order Logic on Graphs with Excluded Topological Subgraphs

    Get PDF
    We show that the model-checking problem for successor-invariant first-order logic is fixed-parameter tractable on graphs with excluded topological subgraphs when parameterised by both the size of the input formula and the size of the exluded topological subgraph. Furthermore, we show that model-checking for order-invariant first-order logic is tractable on coloured posets of bounded width, parameterised by both the size of the input formula and the width of the poset. Our result for successor-invariant FO extends previous results for this logic on planar graphs (Engelmann et al., LICS 2012) and graphs with excluded minors (Eickmeyer et al., LICS 2013), further narrowing the gap between what is known for FO and what is known for successor-invariant FO. The proof uses Grohe and Marx's structure theorem for graphs with excluded topological subgraphs. For order-invariant FO we show that Gajarsk\'y et al.'s recent result for FO carries over to order-invariant FO

    Querying the Guarded Fragment

    Full text link
    Evaluating a Boolean conjunctive query Q against a guarded first-order theory F is equivalent to checking whether "F and not Q" is unsatisfiable. This problem is relevant to the areas of database theory and description logic. Since Q may not be guarded, well known results about the decidability, complexity, and finite-model property of the guarded fragment do not obviously carry over to conjunctive query answering over guarded theories, and had been left open in general. By investigating finite guarded bisimilar covers of hypergraphs and relational structures, and by substantially generalising Rosati's finite chase, we prove for guarded theories F and (unions of) conjunctive queries Q that (i) Q is true in each model of F iff Q is true in each finite model of F and (ii) determining whether F implies Q is 2EXPTIME-complete. We further show the following results: (iii) the existence of polynomial-size conformal covers of arbitrary hypergraphs; (iv) a new proof of the finite model property of the clique-guarded fragment; (v) the small model property of the guarded fragment with optimal bounds; (vi) a polynomial-time solution to the canonisation problem modulo guarded bisimulation, which yields (vii) a capturing result for guarded bisimulation invariant PTIME.Comment: This is an improved and extended version of the paper of the same title presented at LICS 201

    Frameworks for logically classifying polynomial-time optimisation problems.

    Get PDF
    We show that a logical framework, based around a fragment of existential second-order logic formerly proposed by others so as to capture the class of polynomially-bounded P-optimisation problems, cannot hope to do so, under the assumption that P ≠ NP. We do this by exhibiting polynomially-bounded maximisation and minimisation problems that can be expressed in the framework but whose decision versions are NP-complete. We propose an alternative logical framework, based around inflationary fixed-point logic, and show that we can capture the above classes of optimisation problems. We use the inductive depth of an inflationary fixed-point as a means to describe the objective functions of the instances of our optimisation problems

    Two-variable Logic with Counting and a Linear Order

    Get PDF
    We study the finite satisfiability problem for the two-variable fragment of first-order logic extended with counting quantifiers (C2) and interpreted over linearly ordered structures. We show that the problem is undecidable in the case of two linear orders (in the presence of two other binary symbols). In the case of one linear order it is NEXPTIME-complete, even in the presence of the successor relation. Surprisingly, the complexity of the problem explodes when we add one binary symbol more: C2 with one linear order and in the presence of other binary predicate symbols is equivalent, under elementary reductions, to the emptiness problem for multicounter automata

    Order-Invariant MSO is Stronger than Counting MSO in the Finite

    Get PDF
    We compare the expressiveness of two extensions of monadic second-order logic (MSO) over the class of finite structures. The first, counting monadic second-order logic (CMSO), extends MSO with first-order modulo-counting quantifiers, allowing the expression of queries like ``the number of elements in the structure is even''. The second extension allows the use of an additional binary predicate, not contained in the signature of the queried structure, that must be interpreted as an arbitrary linear order on its universe, obtaining order-invariant MSO. While it is straightforward that every CMSO formula can be translated into an equivalent order-invariant MSO formula, the converse had not yet been settled. Courcelle showed that for restricted classes of structures both order-invariant MSO and CMSO are equally expressive, but conjectured that, in general, order-invariant MSO is stronger than CMSO. We affirm this conjecture by presenting a class of structures that is order-invariantly definable in MSO but not definable in CMSO.Comment: Revised version contributed to STACS 200
    • …
    corecore