17,218 research outputs found

    Extended Successive Elimination Algorithm for Fast Optimal Block Matching Motion Estimation

    Get PDF
    In this paper, we propose an extended successive elimination algorithm (SEA) for fast optimal block matching motion estimation (ME). By reinterpreting the typical sum of absolute differences measure, we can obtain additional decision criteria whether to discard the impossible candidate motion vectors. Experimental results show that the proposed algorithm reduces the computational complexity up to 19.85% on average comparing with the multilevel successive elimination algorithm. The proposed algorithm can be used with other SEA to improve the ME performance

    New results on exhaustive search algorithm for motion estimation using adaptive partial distortion search and successive elimination algorithm

    Get PDF
    Version of RecordPublishe

    New techniques for the design and implementation of efficient full-search algorithms for block-matching motion estimation

    Get PDF
    The block-matching motion estimation (BME) is one of the most commonly used techniques for digital video compression in low to moderate bit rate environments. The full search for block-matching motion estimation, as compared to a partial search, provides a higher motion estimation accuracy, yet its computational cost is generally high. Hence, developing new techniques for an efficient implementation of full-search algorithms is of practical significance for the BME. In this thesis, a new full search algorithm is proposed, wherein the mean squared error (MSE) is used as the matching criterion to provide a higher motion estimation accuracy for the BME than that by any algorithm based on the most commonly-used mean absolute difference. It is shown that the computation of the MSE in the Haar wavelet domain results in a computational complexity that is much lower than or of the same order as that of the best-performing full search algorithms available in the literature. A new approach has been developed for the multi-reference-frame block-matching motion estimation, wherein a full search is performed in the spatial domain of the multi-reference-frame memory, and an early termination is imposed in the temporal domain using a novel strategy. It is shown that the computational complexity of the proposed full search method is significantly lower than that of any existing full search technique, and yet has a motion estimation accuracy which is about the same as that of the latter. A new pseudo-spiral-scan data input scheme has been proposed, which can be used in any existing hardware architecture for the implementation of the successive-elimination-based block-matching motion estimation. This scheme results in significant power savings compared to the conventional raster-scan data input scheme. Several designs to implement the successive elimination algorithm have been given, some of which are shown to provide additional power savings

    Approximate Decoding Approaches for Network Coded Correlated Data

    Get PDF
    This paper considers a framework where data from correlated sources are transmitted with help of network coding in ad-hoc network topologies. The correlated data are encoded independently at sensors and network coding is employed in the intermediate nodes in order to improve the data delivery performance. In such settings, we focus on the problem of reconstructing the sources at decoder when perfect decoding is not possible due to losses or bandwidth bottlenecks. We first show that the source data similarity can be used at decoder to permit decoding based on a novel and simple approximate decoding scheme. We analyze the influence of the network coding parameters and in particular the size of finite coding fields on the decoding performance. We further determine the optimal field size that maximizes the expected decoding performance as a trade-off between information loss incurred by limiting the resolution of the source data and the error probability in the reconstructed data. Moreover, we show that the performance of the approximate decoding improves when the accuracy of the source model increases even with simple approximate decoding techniques. We provide illustrative examples about the possible of our algorithms that can be deployed in sensor networks and distributed imaging applications. In both cases, the experimental results confirm the validity of our analysis and demonstrate the benefits of our low complexity solution for delivery of correlated data sources

    Mesh-based video coding for low bit-rate communications

    Get PDF
    In this paper, a new method for low bit-rate content-adaptive mesh-based video coding is proposed. Intra-frame coding of this method employs feature map extraction for node distribution at specific threshold levels to achieve higher density placement of initial nodes for regions that contain high frequency features and conversely sparse placement of initial nodes for smooth regions. Insignificant nodes are largely removed using a subsequent node elimination scheme. The Hilbert scan is then applied before quantization and entropy coding to reduce amount of transmitted information. For moving images, both node position and color parameters of only a subset of nodes may change from frame to frame. It is sufficient to transmit only these changed parameters. The proposed method is well-suited for video coding at very low bit rates, as processing results demonstrate that it provides good subjective and objective image quality at a lower number of required bits

    Minimal Solvers for Monocular Rolling Shutter Compensation under Ackermann Motion

    Full text link
    Modern automotive vehicles are often equipped with a budget commercial rolling shutter camera. These devices often produce distorted images due to the inter-row delay of the camera while capturing the image. Recent methods for monocular rolling shutter motion compensation utilize blur kernel and the straightness property of line segments. However, these methods are limited to handling rotational motion and also are not fast enough to operate in real time. In this paper, we propose a minimal solver for the rolling shutter motion compensation which assumes known vertical direction of the camera. Thanks to the Ackermann motion model of vehicles which consists of only two motion parameters, and two parameters for the simplified depth assumption that lead to a 4-line algorithm. The proposed minimal solver estimates the rolling shutter camera motion efficiently and accurately. The extensive experiments on real and simulated datasets demonstrate the benefits of our approach in terms of qualitative and quantitative results.Comment: Submitted to WACV 201

    A video object generation tool allowing friendly user interaction

    Get PDF
    In this paper we describe an interactive video object segmentation tool developed in the framework of the ACTS-AC098 MOMUSYS project. The Video Object Generator with User Environment (VOGUE) combines three different sets of automatic and semi-automatic-tool (spatial segmentation, object tracking and temporal segmentation) with general purpose tools for user interaction. The result is an integrated environment allowing the user-assisted segmentation of any sort of video sequences in a friendly and efficient manner.Peer ReviewedPostprint (published version

    Keyframe-based visual–inertial odometry using nonlinear optimization

    Get PDF
    Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate visual–inertial odometry or simultaneous localization and mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that nonlinear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual–inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter. This competitive reference implementation performs tightly coupled filtering-based visual–inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy
    corecore