4,827 research outputs found

    Joint dynamic probabilistic constraints with projected linear decision rules

    Get PDF
    We consider multistage stochastic linear optimization problems combining joint dynamic probabilistic constraints with hard constraints. We develop a method for projecting decision rules onto hard constraints of wait-and-see type. We establish the relation between the original (infinite dimensional) problem and approximating problems working with projections from different subclasses of decision policies. Considering the subclass of linear decision rules and a generalized linear model for the underlying stochastic process with noises that are Gaussian or truncated Gaussian, we show that the value and gradient of the objective and constraint functions of the approximating problems can be computed analytically

    Accuracy of numerical solutions using the eulers equation residuals

    Get PDF
    In this paper we derive sorne asymptotic properties on the accuracy of numerical solutions. We sIlow tIlat the approximation error of the policy function is of the same order of magnitude as the size of the Euler equation residuals. Moreover, for bounding this approximation error tIle most relevant parameters are the discount factor and the curvature of the return function. These findings provide theoretical foundations for the construction of tests that can assess the performance of alternative computational methods

    Optimizing Memory-Bounded Controllers for Decentralized POMDPs

    Full text link
    We present a memory-bounded optimization approach for solving infinite-horizon decentralized POMDPs. Policies for each agent are represented by stochastic finite state controllers. We formulate the problem of optimizing these policies as a nonlinear program, leveraging powerful existing nonlinear optimization techniques for solving the problem. While existing solvers only guarantee locally optimal solutions, we show that our formulation produces higher quality controllers than the state-of-the-art approach. We also incorporate a shared source of randomness in the form of a correlation device to further increase solution quality with only a limited increase in space and time. Our experimental results show that nonlinear optimization can be used to provide high quality, concise solutions to decentralized decision problems under uncertainty.Comment: Appears in Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence (UAI2007
    corecore