672 research outputs found

    Towards Optimal Resource Allocation in Wireless Powered Communication Networks with Non-Orthogonal Multiple Access

    Full text link
    The optimal allocation of time and energy resources is characterized in a Wireless Powered Communication Network (WPCN) with non-Orthogonal Multiple Access (NOMA). We consider two different formulations; in the first one (max-sum), the sum-throughput of all users is maximized. In the second one (max-min), and targeting fairness among users, we consider maximizing the min-throughput of all users. Under the above two formulations, two NOMA decoding schemes are studied, namely, low complexity decoding (LCD) and successive interference cancellation decoding (SICD). Due to the non-convexity of three of the studied optimization problems, we consider an approximation approach, in which the non-convex optimization problem is approximated by a convex optimization problem, which satisfies all the constraints of the original problem. The approximated convex optimization problem can then be solved iteratively. The results show a trade-off between maximizing the sum throughout and achieving fairness through maximizing the minimum throughput

    NOMA-based Energy-Efficient Wireless Powered Communications

    Full text link
    In this paper, we study the performance of non-orthogonal multiple access (NOMA) schemes in wireless powered communication networks (WPCN) focusing on the system energy efficiency (EE). We consider multiple energy harvesting user equipments (UEs) that operate based on harvest-then-transmit protocol. The uplink information transfer is carried out by using power-domain multiplexing, and the receiver decodes each UE's data in such a way that the UE with the best channel gain is decoded without interference. In order to determine optimal resource allocation strategies, we formulate optimization problems considering two models, namely half-duplex and asynchronous transmission, based on how downlink and uplink operations are coordinated. In both cases, we have concave-linear fractional problems, and hence Dinkelbach's method can be applied to obtain the globally optimal solutions. Thus, we first derive analytical expressions for the harvesting interval, and then we provide an algorithm to describe the complete procedure. Furthermore, we incorporate delay-limited sources and investigate the impact of statistical queuing constraints on the energy-efficient allocation of operating intervals. We formulate an optimization problem that maximizes the system effective-EE while UEs are applying NOMA scheme for uplink information transfer. Since the problem satisfies pseudo-concavity, we provide an iterative algorithm using bisection method to determine the unique solution. In the numerical results, we observe that broadcasting at higher power level is more energy efficient for WPCN with uplink NOMA. Additionally, exponential decay QoS parameter has considerable impact on the optimal solution, and in the presence of strict constraints, more time is allocated for downlink interval under half-duplex operation with uplink TDMA mode.Comment: 31 pages, 12 figures, to appear on IEEE Transactions on Green Communications and Networkin

    Optimal Resource Allocation in Full-Duplex Ambient Backscatter Communication Networks for Wireless-Powered IoT

    Full text link
    This paper considers an ambient backscatter communication (AmBC) network in which a full-duplex access point (FAP) simultaneously transmits downlink orthogonal frequency division multiplexing (OFDM) signals to its legacy user (LU) and receives uplink signals backscattered from multiple BDs in a time-division-multiple-access manner. To maximize the system throughput and ensure fairness, we aim to maximize the minimum throughput among all BDs by jointly optimizing the backscatter time and reflection coefficients of the BDs, and the FAP's subcarrier power allocation, subject to the LU's throughput constraint, the BDs' harvested-energy constraints, and other practical constraints. For the case with a single BD, we obtain closed-form solutions and propose an efficient algorithm by using the Lagrange duality method. For the general case with multiple BDs, we propose an iterative algorithm by leveraging the block coordinated decent and successive convex optimization techniques. We further show the convergence performances of the proposed algorithms and analyze their complexities. In addition, we study the throughput region which characterizes the Pareto-optimal throughput trade-offs among all BDs. Finally, extensive simulation results show that the proposed joint design achieves significant throughput gain as compared to the benchmark schemes.Comment: 13 pages. This is the third work focusing on ambient backscatter communication (AmBC) systems for cognitive (energy- and spectrum- efficient) IoT. The other two published works are "Modulation in the air: Backscatter communication over ambient OFDM carrier" (IEEE Trans. Commun., 2018) and "Cooperative ambient backscatter communications for green Internet-of-Things"(IEEE IoT Journal, 2018

    Full-Duplex Wireless-Powered Communication Network with Energy Causality

    Full text link
    In this paper, we consider a wireless communication network with a full-duplex hybrid access point (HAP) and a set of wireless users with energy harvesting capabilities. The HAP implements the full-duplex through two antennas: one for broadcasting wireless energy to users in the downlink and one for receiving independent information from users via time-division-multiple-access (TDMA) in the uplink at the same time. All users can continuously harvest wireless power from the HAP until its transmission slot, i.e., the energy causality constraint is modeled by assuming that energy harvested in the future cannot be used for tranmission. Hence, latter users' energy harvesting time is coupled with the transmission time of previous users. Under this setup, we investigate the sum-throughput maximization (STM) problem and the total-time minimization (TTM) problem for the proposed multi-user full-duplex wireless-powered network. The STM problem is proved to be a convex optimization problem. The optimal solution strategy is then obtained in closed-form expression, which can be computed with linear complexity. It is also shown that the sum throughput is non-decreasing with increasing of the number of users. For the TTM problem, by exploiting the properties of the coupling constraints, we propose a two-step algorithm to obtain an optimal solution. Then, for each problem, two suboptimal solutions are proposed and investigated. Finally, the effect of user scheduling on STM and TTM are investigated through simulations. It is also shown that different user scheduling strategies should be used for STM and TTM.Comment: Energy Harvesting, Wireless Power Transfer, Full-Duplex, Optimal Resource Allocation, Optimizatio

    Is Self-Interference in Full-Duplex Communications a Foe or a Friend?

    Full text link
    This paper studies the potential of harvesting energy from the self-interference of a full-duplex base station. The base station is equipped with a self-interference cancellation switch, which is turned-off for a fraction of the transmission period for harvesting the energy from the self-interference that arises due to the downlink transmission. For the remaining transmission period, the switch is on such that the uplink transmission takes place simultaneously with the downlink transmission. A novel energy-efficiency maximization problem is formulated for the joint design of downlink beamformers, uplink power allocations and transmission time-splitting factor. The optimization problem is nonconvex, and hence, a rapidly converging iterative algorithm is proposed by employing the successive convex approximation approach. Numerical simulation results show significant improvement in the energy-efficiency by allowing self-energy recycling.Comment: Accepted for publication in IEEE Signal Processing Letter

    Optimal Transmission Using a Self-sustained Relay in a Full-Duplex MIMO System

    Full text link
    This paper investigates wireless information and power transfer in a full-duplex MIMO relay channel where the self-sustained relay harvests energy from both source transmit signal and self-interference signal to decode and forward source information to a destination. We present a novel technique to jointly optimize power splitting at the relay and precoding design (power allocation) for both the source and relay transmissions. We formulate a new convex optimization problem, establish the dual problem via closed-form optimal primal solutions, and design an efficient primal-dual algorithm to maximize the achievable throughput. Numerical results demonstrate the benefits of using multiple transmit and receive antennas in both information decoding and energy harvesting. We also extend our analysis to the case when channel state information is only available at receiving nodes and show how our algorithm can optimize the power splitting at the relay for it to remain self-sustained. Through analysis and simulation, we show how an optimal combination of non-uniform power splitting, variable power allocation, and self-interference power harvesting effectively exploits a full-duplex MIMO system to achieve significant performance gains over existing uniform power splitting and half-duplex transmission techniques

    Fundamental Green Tradeoffs: Progresses, Challenges, and Impacts on 5G Networks

    Full text link
    With years of tremendous traffic and energy consumption growth, green radio has been valued not only for theoretical research interests but also for the operational expenditure reduction and the sustainable development of wireless communications. Fundamental green tradeoffs, served as an important framework for analysis, include four basic relationships: spectrum efficiency (SE) versus energy efficiency (EE), deployment efficiency (DE) versus energy efficiency (EE), delay (DL) versus power (PW), and bandwidth (BW) versus power (PW). In this paper, we first provide a comprehensive overview on the extensive on-going research efforts and categorize them based on the fundamental green tradeoffs. We will then focus on research progresses of 4G and 5G communications, such as orthogonal frequency division multiplexing (OFDM) and non-orthogonal aggregation (NOA), multiple input multiple output (MIMO), and heterogeneous networks (HetNets). We will also discuss potential challenges and impacts of fundamental green tradeoffs, to shed some light on the energy efficient research and design for future wireless networks.Comment: revised from IEEE Communications Surveys & Tutorial

    Cognitive Wireless Powered Network: Spectrum Sharing Models and Throughput Maximization

    Full text link
    The recent advance in radio-frequency (RF) wireless energy transfer (WET) has motivated the study of wireless powered communication network (WPCN), in which distributed wireless devices are powered via dedicated WET by the hybrid access-point (H-AP) in the downlink (DL) for uplink (UL) wireless information transmission (WIT). In this paper, by exploiting the cognitive radio (CR) technique, we study a new type of CR enabled secondary WPCN, called cognitive WPCN, under spectrum sharing with the primary wireless communication system. In particular, we consider a cognitive WPCN, consisting of one single H-AP with constant power supply and distributed users, shares the same spectrum for its DL WET and UL WIT with an existing primary communication link, where the WPCN's WET/WIT and the primary link's WIT may interfere with each other. Under this new setup, we propose two coexisting models for spectrum sharing of the two systems, namely underlay and overlay based cognitive WPCNs, depending on different types of knowledge on the primary user transmission available at the cognitive WPCN. For each model, we maximize the sum-throughput of the cognitive WPCN by optimizing its transmission under different constraints applied to protect the primary user transmission. Analysis and simulation results are provided to compare the sum-throughput of the cognitive WPCN versus the achievable rate of the primary user in two coexisting models. It is shown that the overlay based cognitive WPCN outperforms the underlay based counterpart, thanks to its fully cooperative WET/WIT design with the primary WIT, while it also requires higher complexity for implementation.Comment: This is the longer version of a paper to appear in IEEE Transactions on Cognitive Communications and Networkin

    Energy-efficient Resource Allocation for Wirelessly Powered Backscatter Communications

    Full text link
    In this letter, we consider a wireless-powered backscatter communication (WP-BackCom) network, where the transmitter first harvests energy from a dedicated energy RF source in the sleep state, and then backscatters information and harvests energy simultaneously through a reflection coefficient. Our goal is to maximize the achievable energy efficiency of the WP-BackCom network via jointly optimizing time allocation, reflection coefficient and transmit power of the dedicated energy RF source. The optimization problem is non-convex and challenging to solve. We develop an efficient Dinkelbach-based iterative algorithm to obtain the optimal resource allocation scheme. The study shows that for each iteration, the energy-efficient WP-BackCom network is equivalent to either the network in which the transmitter always operates in the active state, or the network in which the dedicated energy RF source adopts the maximum allowed power.Comment: It has been accepted by IEEE Communications Letter

    Wireless Powered Communications with Non-Orthogonal Multiple Access

    Full text link
    We study a wireless-powered uplink communication system with non-orthogonal multiple access (NOMA), consisting of one base station and multiple energy harvesting users. More specifically, we focus on the individual data rate optimization and fairness improvement and we show that the formulated problems can be optimally and efficiently solved by either linear programming or convex optimization. In the provided analysis, two types of decoding order strategies are considered, namely fixed decoding order and time- sharing. Furthermore, we propose an efficient greedy algorithm, which is suitable for the practical implementation of the time-sharing strategy. Simulation results illustrate that the proposed scheme outperforms the baseline orthogonal multiple access scheme. More specifically, it is shown that NOMA offers a considerable improvement in throughput, fairness, and energy efficiency. Also, the dependence among system throughput, minimum individual data rate, and harvested energy is revealed, as well as an interesting trade-off between rates and energy efficiency. Finally, the convergence speed of the proposed greedy algorithm is evaluated, and it is shown that the required number of iterations is linear with respect to the number of users.Comment: Submitted to IEEE Transactions on Wireless Communication
    • …
    corecore