274 research outputs found

    Visibly Pushdown Modular Games

    Full text link
    Games on recursive game graphs can be used to reason about the control flow of sequential programs with recursion. In games over recursive game graphs, the most natural notion of strategy is the modular strategy, i.e., a strategy that is local to a module and is oblivious to previous module invocations, and thus does not depend on the context of invocation. In this work, we study for the first time modular strategies with respect to winning conditions that can be expressed by a pushdown automaton. We show that such games are undecidable in general, and become decidable for visibly pushdown automata specifications. Our solution relies on a reduction to modular games with finite-state automata winning conditions, which are known in the literature. We carefully characterize the computational complexity of the considered decision problem. In particular, we show that modular games with a universal Buchi or co Buchi visibly pushdown winning condition are EXPTIME-complete, and when the winning condition is given by a CARET or NWTL temporal logic formula the problem is 2EXPTIME-complete, and it remains 2EXPTIME-hard even for simple fragments of these logics. As a further contribution, we present a different solution for modular games with finite-state automata winning condition that runs faster than known solutions for large specifications and many exits.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Generalizing input-driven languages: theoretical and practical benefits

    Get PDF
    Regular languages (RL) are the simplest family in Chomsky's hierarchy. Thanks to their simplicity they enjoy various nice algebraic and logic properties that have been successfully exploited in many application fields. Practically all of their related problems are decidable, so that they support automatic verification algorithms. Also, they can be recognized in real-time. Context-free languages (CFL) are another major family well-suited to formalize programming, natural, and many other classes of languages; their increased generative power w.r.t. RL, however, causes the loss of several closure properties and of the decidability of important problems; furthermore they need complex parsing algorithms. Thus, various subclasses thereof have been defined with different goals, spanning from efficient, deterministic parsing to closure properties, logic characterization and automatic verification techniques. Among CFL subclasses, so-called structured ones, i.e., those where the typical tree-structure is visible in the sentences, exhibit many of the algebraic and logic properties of RL, whereas deterministic CFL have been thoroughly exploited in compiler construction and other application fields. After surveying and comparing the main properties of those various language families, we go back to operator precedence languages (OPL), an old family through which R. Floyd pioneered deterministic parsing, and we show that they offer unexpected properties in two fields so far investigated in totally independent ways: they enable parsing parallelization in a more effective way than traditional sequential parsers, and exhibit the same algebraic and logic properties so far obtained only for less expressive language families

    Streaming Tree Transducers

    Get PDF
    Theory of tree transducers provides a foundation for understanding expressiveness and complexity of analysis problems for specification languages for transforming hierarchically structured data such as XML documents. We introduce streaming tree transducers as an analyzable, executable, and expressive model for transforming unranked ordered trees in a single pass. Given a linear encoding of the input tree, the transducer makes a single left-to-right pass through the input, and computes the output in linear time using a finite-state control, a visibly pushdown stack, and a finite number of variables that store output chunks that can be combined using the operations of string-concatenation and tree-insertion. We prove that the expressiveness of the model coincides with transductions definable using monadic second-order logic (MSO). Existing models of tree transducers either cannot implement all MSO-definable transformations, or require regular look ahead that prohibits single-pass implementation. We show a variety of analysis problems such as type-checking and checking functional equivalence are solvable for our model.Comment: 40 page

    Visibly Linear Dynamic Logic

    Get PDF
    We introduce Visibly Linear Dynamic Logic (VLDL), which extends Linear Temporal Logic (LTL) by temporal operators that are guarded by visibly pushdown languages over finite words. In VLDL one can, e.g., express that a function resets a variable to its original value after its execution, even in the presence of an unbounded number of intermediate recursive calls. We prove that VLDL describes exactly the ω\omega-visibly pushdown languages. Thus it is strictly more expressive than LTL and able to express recursive properties of programs with unbounded call stacks. The main technical contribution of this work is a translation of VLDL into ω\omega-visibly pushdown automata of exponential size via one-way alternating jumping automata. This translation yields exponential-time algorithms for satisfiability, validity, and model checking. We also show that visibly pushdown games with VLDL winning conditions are solvable in triply-exponential time. We prove all these problems to be complete for their respective complexity classes.Comment: 25 Page

    On Tree Pattern Matching by Pushdown Automata

    Get PDF
    Tree pattern matching is an important operation in Computer Science on which a number of tasks such as mechanical theorem proving, term-rewriting, symbolic computation and non-procedural programming languages are based on. Work has begun on a systematic approach to the construction of tree pattern matchers by deterministic pushdown automata which read subject trees in prefix notation. The method is analogous to the construction of string pattern matchers: for given patterns, a non-deterministic pushdown automaton is created and then it is determinised. In this first paper, we present the proposed non-deterministic pushdown automaton which will serve as a basis for the determinisation process, and prove its correctness.

    Two-Way Visibly Pushdown Automata and Transducers

    Full text link
    Automata-logic connections are pillars of the theory of regular languages. Such connections are harder to obtain for transducers, but important results have been obtained recently for word-to-word transformations, showing that the three following models are equivalent: deterministic two-way transducers, monadic second-order (MSO) transducers, and deterministic one-way automata equipped with a finite number of registers. Nested words are words with a nesting structure, allowing to model unranked trees as their depth-first-search linearisations. In this paper, we consider transformations from nested words to words, allowing in particular to produce unranked trees if output words have a nesting structure. The model of visibly pushdown transducers allows to describe such transformations, and we propose a simple deterministic extension of this model with two-way moves that has the following properties: i) it is a simple computational model, that naturally has a good evaluation complexity; ii) it is expressive: it subsumes nested word-to-word MSO transducers, and the exact expressiveness of MSO transducers is recovered using a simple syntactic restriction; iii) it has good algorithmic/closure properties: the model is closed under composition with a unambiguous one-way letter-to-letter transducer which gives closure under regular look-around, and has a decidable equivalence problem

    Construction of a Pushdown Automaton Accepting a Postfix Notation of a Tree Language Given by a Regular Tree Expression

    Get PDF
    Regular tree expressions are a formalism for describing regular tree languages, which can be accepted by a finite tree automaton as a standard model of computation. It was proved that the class of regular tree languages is a proper subclass of tree languages whose linear notations can be accepted by deterministic string pushdown automata. In this paper, we present a new algorithm for transforming regular tree expressions to equivalent real-time height-deterministic pushdown automata that accept the trees in their postfix notation

    Target Code Selection by Tilling AST with the Use of Tree Pattern Pushdown Automaton

    Get PDF
    A new and simple method for target code selection by tilling an abstract syntax tree is presented. As it is usual, tree patterns corresponding to target machine instructions are matched in the abstract syntax tree. Matching tree patterns is performed with the use of tree pattern pushdown automaton, which accepts all tree patterns matching the abstract syntax tree in the linear postfix bar notation and represents a full index of the abstract syntax tree for tree patterns. The use of the index allows to match patterns quickly, in time depending on the size of patterns and not depending on the size of the tree. The selection of a particular target instruction corresponds to a modification of the abstract syntax tree and also a corresponding incremental modification of the index is performed. A reference to a fully functional prototype is provided

    Synchronizing automata over nested words

    Get PDF
    We extend the concept of a synchronizing word from deterministic finite-state automata (DFA) to nested word automata (NWA): A well-matched nested word is called synchronizing if it resets the control state of any configuration, i. e., takes the NWA from all control states to a single control state. We show that although the shortest synchronizing word for an NWA, if it exists, can be (at most) exponential in the size of the NWA, the existence of such a word can still be decided in polynomial time. As our main contribution, we show that deciding the existence of a short synchronizing word (of at most given length) becomes PSPACE-complete (as opposed to NP-complete for DFA). The upper bound makes a connection to pebble games and Strahler numbers, and the lower bound goes via small-cost synchronizing words for DFA, an intermediate problem that we also show PSPACE-complete. We also characterize the complexity of a number of related problems, using the observation that the intersection nonemptiness problem for NWA is EXP-complete
    • …
    corecore