927 research outputs found

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated

    Analysing the behaviour of robot teams through relational sequential pattern mining

    Full text link
    This report outlines the use of a relational representation in a Multi-Agent domain to model the behaviour of the whole system. A desired property in this systems is the ability of the team members to work together to achieve a common goal in a cooperative manner. The aim is to define a systematic method to verify the effective collaboration among the members of a team and comparing the different multi-agent behaviours. Using external observations of a Multi-Agent System to analyse, model, recognize agent behaviour could be very useful to direct team actions. In particular, this report focuses on the challenge of autonomous unsupervised sequential learning of the team's behaviour from observations. Our approach allows to learn a symbolic sequence (a relational representation) to translate raw multi-agent, multi-variate observations of a dynamic, complex environment, into a set of sequential behaviours that are characteristic of the team in question, represented by a set of sequences expressed in first-order logic atoms. We propose to use a relational learning algorithm to mine meaningful frequent patterns among the relational sequences to characterise team behaviours. We compared the performance of two teams in the RoboCup four-legged league environment, that have a very different approach to the game. One uses a Case Based Reasoning approach, the other uses a pure reactive behaviour.Comment: 25 page

    Layered control architectures in robots and vertebrates

    Get PDF
    We revieiv recent research in robotics, neuroscience, evolutionary neurobiology, and ethology with the aim of highlighting some points of agreement and convergence. Specifically, we com pare Brooks' (1986) subsumption architecture for robot control with research in neuroscience demonstrating layered control systems in vertebrate brains, and with research in ethology that emphasizes the decomposition of control into multiple, intertwined behavior systems. From this perspective we then describe interesting parallels between the subsumption architecture and the natural layered behavior system that determines defense reactions in the rat. We then consider the action selection problem for robots and vertebrates and argue that, in addition to subsumption- like conflict resolution mechanisms, the vertebrate nervous system employs specialized selection mechanisms located in a group of central brain structures termed the basal ganglia. We suggest that similar specialized switching mechanisms might be employed in layered robot control archi tectures to provide effective and flexible action selection

    On Global Types and Multi-Party Session

    Get PDF
    Global types are formal specifications that describe communication protocols in terms of their global interactions. We present a new, streamlined language of global types equipped with a trace-based semantics and whose features and restrictions are semantically justified. The multi-party sessions obtained projecting our global types enjoy a liveness property in addition to the traditional progress and are shown to be sound and complete with respect to the set of traces of the originating global type. Our notion of completeness is less demanding than the classical ones, allowing a multi-party session to leave out redundant traces from an underspecified global type. In addition to the technical content, we discuss some limitations of our language of global types and provide an extensive comparison with related specification languages adopted in different communities

    Capitalist Formations of Enclosure: Space and the Extinction of the Commons

    Get PDF
    Despite their theoretical and political potential, recent debates on enclosure usually lack an effective consideration of how space is mobilized in the process of dispossession. This article connects the analysis of enclosure's general spatial rationality to a range of illustrations of its particular formations and procedures. Enclosure is understood as one of capitalism's “universal territorial equivalents”, a polymorphous technique with variegated expressions in time but also with a consistent logic that uses the spatial erosion of the commons to subsume non-commodified, self-managed social spaces. In response to the ever-changing nature of commoning, successive regimes of enclosure reshape the morphologies of deprivation and their articulation to other state and market apparatuses in order to meet shifting strategies of capital accumulation and social reproduction. Through a spatially nuanced account of these phenomena, I outline a tentative genealogy of enclosure formations that allows tracking diverse geographies of dispossession across different scales and regulatory contexts in various historical stages of capitalist development

    COLAB : a hybrid knowledge representation and compilation laboratory

    Get PDF
    Knowledge bases for real-world domains such as mechanical engineering require expressive and efficient representation and processing tools. We pursue a declarative-compilative approach to knowledge engineering. While Horn logic (as implemented in PROLOG) is well-suited for representing relational clauses, other kinds of declarative knowledge call for hybrid extensions: functional dependencies and higher-order knowledge should be modeled directly. Forward (bottom-up) reasoning should be integrated with backward (top-down) reasoning. Constraint propagation should be used wherever possible instead of search-intensive resolution. Taxonomic knowledge should be classified into an intuitive subsumption hierarchy. Our LISP-based tools provide direct translators of these declarative representations into abstract machines such as an extended Warren Abstract Machine (WAM) and specialized inference engines that are interfaced to each other. More importantly, we provide source-to-source transformers between various knowledge types, both for user convenience and machine efficiency. These formalisms with their translators and transformers have been developed as part of COLAB, a compilation laboratory for studying what we call, respectively, "vertical\u27; and "horizontal\u27; compilation of knowledge, as well as for exploring the synergetic collaboration of the knowledge representation formalisms. A case study in the realm of mechanical engineering has been an important driving force behind the development of COLAB. It will be used as the source of examples throughout the paper when discussing the enhanced formalisms, the hybrid representation architecture, and the compilers
    corecore