357 research outputs found

    An Abstract Approach to Consequence Relations

    Full text link
    We generalise the Blok-J\'onsson account of structural consequence relations, later developed by Galatos, Tsinakis and other authors, in such a way as to naturally accommodate multiset consequence. While Blok and J\'onsson admit, in place of sheer formulas, a wider range of syntactic units to be manipulated in deductions (including sequents or equations), these objects are invariably aggregated via set-theoretical union. Our approach is more general in that non-idempotent forms of premiss and conclusion aggregation, including multiset sum and fuzzy set union, are considered. In their abstract form, thus, deductive relations are defined as additional compatible preorderings over certain partially ordered monoids. We investigate these relations using categorical methods, and provide analogues of the main results obtained in the general theory of consequence relations. Then we focus on the driving example of multiset deductive relations, providing variations of the methods of matrix semantics and Hilbert systems in Abstract Algebraic Logic

    Logics without the contraction rule and residuated lattices

    Get PDF
    In this paper, we will develop an algebraic study of substructural propositional logics over FLew, i.e. the logic which is obtained from intuitionistic logics by eliminating the contraction rule. Our main technical tool is to use residuated lattices as the algebraic semantics for them. This enables us to study different kinds of nonclassical logics, including intermediate logics, BCK-logics, Lukasiewicz’s many-valued logics and fuzzy logics, within a uniform framework

    Decidability and Complexity in Weakening and Contraction Hypersequent Substructural Logics

    Get PDF
    We establish decidability for the infinitely many axiomatic extensions of the commutative Full Lambek logic with weakening FLew (i.e. IMALLW) that have a cut-free hypersequent proof calculus. Specifically: every analytic structural rule exten- sion of HFLew. Decidability for the corresponding extensions of its contraction counterpart FLec was established recently but their computational complexity was left unanswered. In the second part of this paper, we introduce just enough on length functions for well-quasi-orderings and the fast-growing complexity classes to obtain complexity upper bounds for both the weakening and contraction extensions. A specific instance of this result yields the first complexity bound for the prominent fuzzy logic MTL (monoidal t-norm based logic) providing an answer to a long- standing open problem

    Tower-Complete Problems in Contraction-Free Substructural Logics

    Get PDF
    We investigate the non-elementary computational complexity of a family of substructural logics without contraction. With the aid of the technique pioneered by Lazi? and Schmitz (2015), we show that the deducibility problem for full Lambek calculus with exchange and weakening (FL_{ew}) is not in Elementary (i.e., the class of decision problems that can be decided in time bounded by an elementary recursive function), but is in PR (i.e., the class of decision problems that can be decided in time bounded by a primitive recursive function). More precisely, we show that this problem is complete for Tower, which is a non-elementary complexity class forming a part of the fast-growing complexity hierarchy introduced by Schmitz (2016). The same complexity result holds even for deducibility in BCK-logic, i.e., the implicational fragment of FL_{ew}. We furthermore show the Tower-completeness of the provability problem for elementary affine logic, which was proved to be decidable by Dal Lago and Martini (2004)
    • …
    corecore