685 research outputs found

    An Alternative Natural Deduction for the Intuitionistic Propositional Logic

    Get PDF
    A natural deduction system NI, for the full propositional intuitionistic logic, is proposed. The operational rules of NI are obtained by the translation from Gentzen’s calculus LJ and the normalization is proved, via translations from sequent calculus derivations to natural deduction derivations and back.This work is supported by the Ministary of Science and Technology of Serbia, grant number ON174026

    Modal Linear Logic in Higher Order Logic, an experiment in Coq

    No full text
    The sequent calculus of classical modal linear logic KDT 4lin is coded in the higher order logic using the proof assistant COQ. The encoding has been done using two-level meta reasoning in Coq. KDT 4lin has been encoded as an object logic by inductively defining the set of modal linear logic formulas, the sequent relation on lists of these formulas, and some lemmas to work with lists.This modal linear logic has been argued to be a good candidate for epistemic applications. As examples some epistemic problems have been coded and proven in our encoding in Coq::the problem of logical omniscience and an epistemic puzzle: ’King, three wise men and five hats’

    A Labelled Analytic Theorem Proving Environment for Categorial Grammar

    Full text link
    We present a system for the investigation of computational properties of categorial grammar parsing based on a labelled analytic tableaux theorem prover. This proof method allows us to take a modular approach, in which the basic grammar can be kept constant, while a range of categorial calculi can be captured by assigning different properties to the labelling algebra. The theorem proving strategy is particularly well suited to the treatment of categorial grammar, because it allows us to distribute the computational cost between the algorithm which deals with the grammatical types and the algebraic checker which constrains the derivation.Comment: 11 pages, LaTeX2e, uses examples.sty and a4wide.st

    Labelled Natural Deduction for Substructural Logics

    No full text
    In this paper a uniform methodology to perform Natural Deduction over the family of linear, relevance and intuitionistic logics is proposed. The methodology follows the Labelled Deductive Systems (LDS) discipline, where the deductive process manipulates declarative units { formulas labelled according to a labelling algebra. In the system de-scribed here, labels are either ground terms or variables of a given labelling language and inference rules manipulate formulas and labels simultaneously, generating (whenever necessary) constraints on the labels used in the rules. A set of natural deduction style inference rules is given, and the notion of a derivation is dened which associates a la-belled natural deduction style \structural derivation " with a set of generated constraints. Algorithmic procedures, based on a technique called resource abduction, are dened to solve the constraints generated within a derivation, and their termination conditions dis-cussed. A natural deduction derivation is correct with respect to a given substructural logic, if, under the condition that the algorithmic procedures terminate, the associated set of constraints is satised with respect to the underlying labelling algebra. This is shown by proving that the natural deduction system is sound and complete with respect to the LKE tableaux system [DG94].

    An Abstract Approach to Consequence Relations

    Full text link
    We generalise the Blok-J\'onsson account of structural consequence relations, later developed by Galatos, Tsinakis and other authors, in such a way as to naturally accommodate multiset consequence. While Blok and J\'onsson admit, in place of sheer formulas, a wider range of syntactic units to be manipulated in deductions (including sequents or equations), these objects are invariably aggregated via set-theoretical union. Our approach is more general in that non-idempotent forms of premiss and conclusion aggregation, including multiset sum and fuzzy set union, are considered. In their abstract form, thus, deductive relations are defined as additional compatible preorderings over certain partially ordered monoids. We investigate these relations using categorical methods, and provide analogues of the main results obtained in the general theory of consequence relations. Then we focus on the driving example of multiset deductive relations, providing variations of the methods of matrix semantics and Hilbert systems in Abstract Algebraic Logic

    Reasoning about Knowledge in Linear Logic: Modalities and Complexity

    No full text
    In a recent paper, Jean-Yves Girard commented that ”it has been a long time since philosophy has stopped intereacting with logic”[17]. Actually, it has no

    Labelled natural deduction for substructural logics

    Get PDF
    In this paper a uniform methodology to perform Natural Deduction over the family of linear, relevance and intuitionistic logics is proposed. The methodology follows the Labelled Deductive Systems (LDS) discipline, where the deductive process manipulates declarative units - formulas labelled according to a labelling algebra. In the system described here, labels are either ground terms or variables of a given labelling language and inference rules manipulate formulas and labels simultaneously, generating (whenever necessary) constraints on the labels used in the rules. A set of natural deduction style inference rules is given, and the notion of a derivation is defined which associates a labelled natural deduction style "structural derivation" with a set of generated constraints. Algorithmic procedures, based on a technique called resource abduction, are defined to solve the constraints generated within a derivation, and their termination conditions discussed. A natural deduction derivation is correct with respect to a given substructural logic, if, under the condition that the algorithmic procedures terminate, the associated set of constraints is satisfied with respect to the underlying labelling algebra. This is shown by proving that the natural deduction system is sound and complete with respect to the LKE tableaux system
    • 

    corecore