1,367 research outputs found

    Blind Multilinear Identification

    Full text link
    We discuss a technique that allows blind recovery of signals or blind identification of mixtures in instances where such recovery or identification were previously thought to be impossible: (i) closely located or highly correlated sources in antenna array processing, (ii) highly correlated spreading codes in CDMA radio communication, (iii) nearly dependent spectra in fluorescent spectroscopy. This has important implications --- in the case of antenna array processing, it allows for joint localization and extraction of multiple sources from the measurement of a noisy mixture recorded on multiple sensors in an entirely deterministic manner. In the case of CDMA, it allows the possibility of having a number of users larger than the spreading gain. In the case of fluorescent spectroscopy, it allows for detection of nearly identical chemical constituents. The proposed technique involves the solution of a bounded coherence low-rank multilinear approximation problem. We show that bounded coherence allows us to establish existence and uniqueness of the recovered solution. We will provide some statistical motivation for the approximation problem and discuss greedy approximation bounds. To provide the theoretical underpinnings for this technique, we develop a corresponding theory of sparse separable decompositions of functions, including notions of rank and nuclear norm that specialize to the usual ones for matrices and operators but apply to also hypermatrices and tensors.Comment: 20 pages, to appear in IEEE Transactions on Information Theor

    Modular Regularization Algorithms

    Get PDF

    The condition number of join decompositions

    Full text link
    The join set of a finite collection of smooth embedded submanifolds of a mutual vector space is defined as their Minkowski sum. Join decompositions generalize some ubiquitous decompositions in multilinear algebra, namely tensor rank, Waring, partially symmetric rank and block term decompositions. This paper examines the numerical sensitivity of join decompositions to perturbations; specifically, we consider the condition number for general join decompositions. It is characterized as a distance to a set of ill-posed points in a supplementary product of Grassmannians. We prove that this condition number can be computed efficiently as the smallest singular value of an auxiliary matrix. For some special join sets, we characterized the behavior of sequences in the join set converging to the latter's boundary points. Finally, we specialize our discussion to the tensor rank and Waring decompositions and provide several numerical experiments confirming the key results

    Multidirectional Subspace Expansion for One-Parameter and Multiparameter Tikhonov Regularization

    Get PDF
    Tikhonov regularization is a popular method to approximate solutions of linear discrete ill-posed problems when the observed or measured data is contaminated by noise. Multiparameter Tikhonov regularization may improve the quality of the computed approximate solutions. We propose a new iterative method for large-scale multiparameter Tikhonov regularization with general regularization operators based on a multidirectional subspace expansion. The multidirectional subspace expansion may be combined with subspace truncation to avoid excessive growth of the search space. Furthermore, we introduce a simple and effective parameter selection strategy based on the discrepancy principle and related to perturbation results
    • …
    corecore