55 research outputs found

    Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images

    Full text link
    In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation hasn't efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address the these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient

    Learning to Propagate Labels on Graphs: An Iterative Multitask Regression Framework for Semi-supervised Hyperspectral Dimensionality Reduction

    Get PDF
    Hyperspectral dimensionality reduction (HDR), an important preprocessing step prior to high-level data analysis, has been garnering growing attention in the remote sensing community. Although a variety of methods, both unsupervised and supervised models, have been proposed for this task, yet the discriminative ability in feature representation still remains limited due to the lack of a powerful tool that effectively exploits the labeled and unlabeled data in the HDR process. A semi-supervised HDR approach, called iterative multitask regression (IMR), is proposed in this paper to address this need. IMR aims at learning a low-dimensional subspace by jointly considering the labeled and unlabeled data, and also bridging the learned subspace with two regression tasks: labels and pseudo-labels initialized by a given classifier. More significantly, IMR dynamically propagates the labels on a learnable graph and progressively refines pseudo-labels, yielding a well-conditioned feedback system. Experiments conducted on three widely-used hyperspectral image datasets demonstrate that the dimension-reduced features learned by the proposed IMR framework with respect to classification or recognition accuracy are superior to those of related state-of-the-art HDR approaches

    Machine Learning for Robust Understanding of Scene Materials in Hyperspectral Images

    Get PDF
    The major challenges in hyperspectral (HS) imaging and data analysis are expensive sensors, high dimensionality of the signal, limited ground truth, and spectral variability. This dissertation develops and analyzes machine learning based methods to address these problems. In the first part, we examine one of the most important HS data analysis tasks-vegetation parameter estimation. We present two Gaussian processes based approaches for improving the accuracy of vegetation parameter retrieval when ground truth is limited and/or spectral variability is high. The first is the adoption of covariance functions based on well-established metrics, such as, spectral angle and spectral correlation, which are known to be better measures of similarity for spectral data. The second is the joint modeling of related vegetation parameters by multitask Gaussian processes so that the prediction accuracy of the vegetation parameter of interest can be improved with the aid of related vegetation parameters for which a larger set of ground truth is available. The efficacy of the proposed methods is demonstrated by comparing them against state-of-the art approaches on three real-world HS datasets and one synthetic dataset. In the second part, we demonstrate how Bayesian optimization can be applied to jointly tune the different components of hyperspectral data analysis frameworks for better performance. Experimental validation on the spatial-spectral classification framework consisting of a classifier and a Markov random field is provided. In the third part, we investigate whether high dimensional HS spectra can be reconstructed from low dimensional multispectral (MS) signals, that can be obtained from much cheaper, lower spectral resolution sensors. A novel end-to-end convolutional residual neural network architecture is proposed that can simultaneously optimize both the MS bands and the transformation to reconstruct HS spectra from MS signals by analyzing a large quantity of HS data. The learned band can be implemented in sensor hardware and the learned transformation can be incorporated in the data processing pipeline to build a low-cost hyperspectral data collection system. Using a diverse set of real-world datasets, we show how the proposed approach of optimizing MS bands along with the transformation rather than just optimizing the transformation with fixed bands, as proposed by previous studies, can drastically increase the reconstruction accuracy. Additionally, we also investigate the prospects of using reconstructed HS spectra for land cover classification

    Interpretable Hyperspectral AI: When Non-Convex Modeling meets Hyperspectral Remote Sensing

    Full text link
    Hyperspectral imaging, also known as image spectrometry, is a landmark technique in geoscience and remote sensing (RS). In the past decade, enormous efforts have been made to process and analyze these hyperspectral (HS) products mainly by means of seasoned experts. However, with the ever-growing volume of data, the bulk of costs in manpower and material resources poses new challenges on reducing the burden of manual labor and improving efficiency. For this reason, it is, therefore, urgent to develop more intelligent and automatic approaches for various HS RS applications. Machine learning (ML) tools with convex optimization have successfully undertaken the tasks of numerous artificial intelligence (AI)-related applications. However, their ability in handling complex practical problems remains limited, particularly for HS data, due to the effects of various spectral variabilities in the process of HS imaging and the complexity and redundancy of higher dimensional HS signals. Compared to the convex models, non-convex modeling, which is capable of characterizing more complex real scenes and providing the model interpretability technically and theoretically, has been proven to be a feasible solution to reduce the gap between challenging HS vision tasks and currently advanced intelligent data processing models
    corecore