932 research outputs found

    Quickest detection in coupled systems

    Full text link
    This work considers the problem of quickest detection of signals in a coupled system of N sensors, which receive continuous sequential observations from the environment. It is assumed that the signals, which are modeled a general Ito processes, are coupled across sensors, but that their onset times may differ from sensor to sensor. The objective is the optimal detection of the first time at which any sensor in the system receives a signal. The problem is formulated as a stochastic optimization problem in which an extended average Kullback- Leibler divergence criterion is used as a measure of detection delay, with a constraint on the mean time between false alarms. The case in which the sensors employ cumulative sum (CUSUM) strategies is considered, and it is proved that the minimum of N CUSUMs is asymptotically optimal as the mean time between false alarms increases without bound.Comment: 6 pages, 48th IEEE Conference on Decision and Control, Shanghai 2009 December 16 - 1

    Structural damage monitoring based on machine learning and bio-inspired computing

    Get PDF
    For a few decades, systems for supervising structures have become increasingly irnportant. In origin, the strategies had as a goal only the detection of damages. Furthermore, now monitor­ing the civil or military structures permanently and offering sufficient and relevant information helping make the right decisions. The SHM is applicable, carrying out preventive or corrective maintenance decisions, reducing the possibility of accidents, and promoting the reduction of costs that more extensive repairs imply when the damage is detected early. The current work focused on three elements of diagnosis of structural damage: detection, classification, and loca­tion, either in metaltic or cornposite material structures, given their wide use in air, land, rnar­itime transport vehicles, aerospace, wind turbines, civil and military infrastructure. This work used the tools offered by machine leaming and bio-inspired computing. Given the right results to solve complex problems and recognizing pattems. It also involves changes in temperature since it is one of the parameters that influence real environments' structures. Information of a statistical nature applied to recognizing pattems and reducing the size of the information was used with tools such as PCA (principal component analysis), thanks to the experience obtained in works developed by the CoDAlab research group. The document is divided into five parts. The first includes a general description of the problem, the objecti.-es, and the results obtained, in addition to a brief theoretical introduction. Chapters 2, 3, and 4 include articles published in different joumals. Chapter 5 shows the results and conclusions. Other contributions, such as a book chapter and sorne papers presented at conferences, are included in appendix A. Finally, appendix B presents a multiplexing system used to develop the experiments carried out in this work.Desde hace algunas décadas los sistemas para supervisar estructuras han tenido cada vez más relevancia. En esta evolución se ha pasado de estrategias que tenían como meta sólo la detec­ción de fallas a otras que buscan monitorizar permanentemente las estructuras bien sean éstas civiles o militares, ofreciendo información suficiente y pertinente que incide positivamente en el momento de tomar buenas decisiones, dentro de las cuales cabe destacar por ejemplo, las ori­entadas a realizar mantenimientos preventivos o correctivos si es del caso, reduciendo la posi­bilidad de accidentes, además de propiciar la disminución de costos que implican las repara­ciones más extensas cuando el daño se logra detectar de manera temprana. El presente trabajo se enfocó en tres elementos de diagnóstico de daños en estructuras, siendo estos en particular la detección, clasificación y localización, bien sea en estructuras metálicas o de material com­puesto, dado su amplio uso en vehículos de transporte aéreo, terrestre, marítimo, aeroespacial, aerogeneradores, infraestructura civil y militar. Se utilizaron las herramientas que ofrecen el aprendizaje automático (machine leaming) y la computación bio-inspirada, dados los buenos resultados que han ofrecido en la solución de problemas complejos y el reconocimiento de pa­trones. Involucrando cambios de temperatura dado que es uno de los parámetros a los que se ven enfrentadas las estructuras en ambientes reales. Se utilizó información de naturaleza estadística aplicada al reconocimiento de patrones y reducción del tamaño de la información con herramientas como el PCA (análisis de componentes principales), gracias a la experiencia lograda en trabajos desarrollados por el grupo de investigación CoDAlab. El documento está dividido en cinco capítulos. En el primerio se incluye una descripción general del problema, los objetivos y los resultados obtenidos, además de un breve introduc­ción teórica. Los Capítulos 2,3 y 4 incluyen los artículos publicados en diferentes revistas. En el Capítulo 5 se realiza una presentación de los resultados y conclusiones. En el Anexo A se incluyen otras contribuciones tales como un capítulo de libro y algunos trabajos presentados en conferencias. Finalmente en el anexo B se presenta el diseño de un sistema de multipliexación utilizado en el desarrollo de los experimentos realizados en el presente trabajo.Postprint (published version

    A damage classification approach for structural health monitoring using machine learning

    Get PDF
    Inspection strategies with guided wave-based approaches give to structural health monitoring (SHM) applications several advantages, among them, the possibility of the use of real data from the structure which enables continuous monitoring and online damage identification. These kinds of inspection strategies are based on the fact that these waves can propagate over relatively long distances and are able to interact sensitively with and uniquely with different types of defects. The principal goal for SHM is oriented to the development of efficient methodologies to process these data and provide results associated with the different levels of the damage identification process. As a contribution, this work presents a damage detection and classification methodology which includes the use of data collected from a structure under different structural states by means of a piezoelectric sensor network taking advantage of the use of guided waves, hierarchical nonlinear principal component analysis (h-NLPCA), and machine learning. The methodology is evaluated and tested in two structures: (i) a carbon fibre reinforced polymer (CFRP) sandwich structure with some damages on the multilayered composite sandwich structure and (ii) a CFRP composite plate. Damages in the structures were intentionally produced to simulate different damage mechanisms, that is, delamination and cracking of the skin.Peer ReviewedPostprint (published version

    Intelligent Feature Extraction, Data Fusion and Detection of Concrete Bridge Cracks: Current Development and Challenges

    Full text link
    As a common appearance defect of concrete bridges, cracks are important indices for bridge structure health assessment. Although there has been much research on crack identification, research on the evolution mechanism of bridge cracks is still far from practical applications. In this paper, the state-of-the-art research on intelligent theories and methodologies for intelligent feature extraction, data fusion and crack detection based on data-driven approaches is comprehensively reviewed. The research is discussed from three aspects: the feature extraction level of the multimodal parameters of bridge cracks, the description level and the diagnosis level of the bridge crack damage states. We focus on previous research concerning the quantitative characterization problems of multimodal parameters of bridge cracks and their implementation in crack identification, while highlighting some of their major drawbacks. In addition, the current challenges and potential future research directions are discussed.Comment: Published at Intelligence & Robotics; Its copyright belongs to author

    Bearing assessment tool for longitudinal bridge performance

    Get PDF
    This work provides an unsupervised learning approach based on a single-valued performance indicator to monitor the global behavior of critical components in a viaduct, such as bearings. We propose an outlier detection method for longitudinal displacements to assess the behavior of a singular asymmetric prestressed concrete structure with a 120 m high central pier acting as a fixed point. We first show that the available long-term horizontal displacement measurements recorded during the undamaged state exhibit strong correlations at the different locations of the bearings. Thus, we combine measurements from four sensors to design a robust performance indicator that is only weakly affected by temperature variations after the application of principal component analysis. We validate the method and show its efficiency against false positives and negatives using several metrics: accuracy, precision, recall, and F1 score. Due to its unsupervised learning scope, the proposed technique is intended to serve as a real-time supervision tool that complements maintenance inspections. It aims to provide support for the prioritization and postponement of maintenance actions in bridge management.Authors would like to acknowledge the discussions with Marcos Pantaleón from APIA XXI, Ambher Monitoring Systems and Banobras S.N.C. This work has received funding from the European’s Union Horizon 2020 research and innovation program under the grant agreement No 690660 (RAGTIME Project) and No 769373 (FORESEE Project). This paper refects only the author’s views. The European Commission and INEA are not responsible for any use that may be made of the information contained therein. David Pardo has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 777778 (MATHROCKS), the European POCTEFA 2014-2020 Project PIXIL (EFA362/19) by the European Regional Development Fund (ERDF) through the Interreg V-A Spain-France-Andorra program, the Project of the Spanish Ministry of Science and Innovation with reference PID2019-108111RBI00 (FEDER/AEI), the BCAM “Severo Ochoa” accreditation of excellence (SEV-2017-0718), and the Basque Government through the BERC 2018-2021 program, the two Elkartek projects 3KIA (KK2020/00049) and MATHEO (KK-2019-00085), the grant "Artifcial Intelligence in BCAM number EXP. 2019/00432", and the Consolidated Research Group MATHMODE (IT1294-19) given by the Department of Education

    Multisource and Multitemporal Data Fusion in Remote Sensing

    Get PDF
    The sharp and recent increase in the availability of data captured by different sensors combined with their considerably heterogeneous natures poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary datasets, however, opens up the possibility of utilizing multimodal datasets in a joint manner to further improve the performance of the processing approaches with respect to the application at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several spaceborne sensors, the integration of the temporal information with the spatial and/or spectral/backscattering information of the remotely sensed data is possible and helps to move from a representation of 2D/3D data to 4D data structures, where the time variable adds new information as well as challenges for the information extraction algorithms. There are a huge number of research works dedicated to multisource and multitemporal data fusion, but the methods for the fusion of different modalities have expanded in different paths according to each research community. This paper brings together the advances of multisource and multitemporal data fusion approaches with respect to different research communities and provides a thorough and discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to conduct novel investigations on this challenging topic by supplying sufficient detail and references
    corecore