8,366 research outputs found

    Comparative study for broadband direction of arrival estimation techniques

    Get PDF
    This paper reviews and compares three different linear algebraic signal subspace techniques for broadband direction of arrival estimation --- (i) the coherent signal subspace approach, (ii) eigenanalysis of the parameterised spatial correlation matrix, and (iii) a polynomial version of the multiple signal classification algorithm. Simulation results comparing the accuracy of these methods are presented

    Approximate maximum likelihood estimation of two closely spaced sources

    Get PDF
    The performance of the majority of high resolution algorithms designed for either spectral analysis or Direction-of-Arrival (DoA) estimation drastically degrade when the amplitude sources are highly correlated or when the number of available snapshots is very small and possibly less than the number of sources. Under such circumstances, only Maximum Likelihood (ML) or ML-based techniques can still be effective. The main drawback of such optimal solutions lies in their high computational load. In this paper we propose a computationally efficient approximate ML estimator, in the case of two closely spaced signals, that can be used even in the single snapshot case. Our approach relies on Taylor series expansion of the projection onto the signal subspace and can be implemented through 1-D Fourier transforms. Its effectiveness is illustrated in complicated scenarios with very low sample support and possibly correlated sources, where it is shown to outperform conventional estimators

    The influence of random element displacement on DOA estimates obtained with (Khatri-Rao-)root-MUSIC

    Get PDF
    Although a wide range of direction of arrival (DOA) estimation algorithms has been described for a diverse range of array configurations, no specific stochastic analysis framework has been established to assess the probability density function of the error on DOA estimates due to random errors in the array geometry. Therefore, we propose a stochastic collocation method that relies on a generalized polynomial chaos expansion to connect the statistical distribution of random position errors to the resulting distribution of the DOA estimates. We apply this technique to the conventional root-MUSIC and the Khatri-Rao-root-MUSIC methods. According to Monte-Carlo simulations, this novel approach yields a speedup by a factor of more than 100 in terms of CPU-time for a one-dimensional case and by a factor of 56 for a two-dimensional case
    corecore