3,508 research outputs found

    Subspace Polynomials and Cyclic Subspace Codes

    Full text link
    Subspace codes have received an increasing interest recently due to their application in error-correction for random network coding. In particular, cyclic subspace codes are possible candidates for large codes with efficient encoding and decoding algorithms. In this paper we consider such cyclic codes and provide constructions of optimal codes for which their codewords do not have full orbits. We further introduce a new way to represent subspace codes by a class of polynomials called subspace polynomials. We present some constructions of such codes which are cyclic and analyze their parameters

    Stabilizer codes from modified symplectic form

    Full text link
    Stabilizer codes form an important class of quantum error correcting codes which have an elegant theory, efficient error detection, and many known examples. Constructing stabilizer codes of length nn is equivalent to constructing subspaces of Fpn×Fpn\mathbb{F}_p^n \times \mathbb{F}_p^n which are "isotropic" under the symplectic bilinear form defined by ⟨(a,b),(c,d)⟩=aTd−bTc\left\langle (\mathbf{a},\mathbf{b}),(\mathbf{c},\mathbf{d}) \right\rangle = \mathbf{a}^{\mathrm{T}} \mathbf{d} - \mathbf{b}^{\mathrm{T}} \mathbf{c}. As a result, many, but not all, ideas from the theory of classical error correction can be translated to quantum error correction. One of the main theoretical contribution of this article is to study stabilizer codes starting with a different symplectic form. In this paper, we concentrate on cyclic codes. Modifying the symplectic form allows us to generalize the previous known construction for linear cyclic stabilizer codes, and in the process, circumvent some of the Galois theoretic no-go results proved there. More importantly, this tweak in the symplectic form allows us to make use of well known error correcting algorithms for cyclic codes to give efficient quantum error correcting algorithms. Cyclicity of error correcting codes is a "basis dependent" property. Our codes are no more "cyclic" when they are derived using the standard symplectic forms (if we ignore the error correcting properties like distance, all such symplectic forms can be converted to each other via a basis transformation). Hence this change of perspective is crucial from the point of view of designing efficient decoding algorithm for these family of codes. In this context, recall that for general codes, efficient decoding algorithms do not exist if some widely believed complexity theoretic assumptions are true

    Cyclic Orbit Codes

    Full text link
    In network coding a constant dimension code consists of a set of k-dimensional subspaces of F_q^n. Orbit codes are constant dimension codes which are defined as orbits of a subgroup of the general linear group, acting on the set of all subspaces of F_q^n. If the acting group is cyclic, the corresponding orbit codes are called cyclic orbit codes. In this paper we give a classification of cyclic orbit codes and propose a decoding procedure for a particular subclass of cyclic orbit codes.Comment: submitted to IEEE Transactions on Information Theor

    A Complete Characterization of Irreducible Cyclic Orbit Codes and their Pl\"ucker Embedding

    Full text link
    Constant dimension codes are subsets of the finite Grassmann variety. The study of these codes is a central topic in random linear network coding theory. Orbit codes represent a subclass of constant dimension codes. They are defined as orbits of a subgroup of the general linear group on the Grassmannian. This paper gives a complete characterization of orbit codes that are generated by an irreducible cyclic group, i.e. a group having one generator that has no non-trivial invariant subspace. We show how some of the basic properties of these codes, the cardinality and the minimum distance, can be derived using the isomorphism of the vector space and the extension field. Furthermore, we investigate the Pl\"ucker embedding of these codes and show how the orbit structure is preserved in the embedding.Comment: submitted to Designs, Codes and Cryptograph

    A Complete Characterization of Irreducible Cyclic Orbit Codes

    Full text link
    We give a complete list of orbit codes that are generated by an irreducible cyclic group, i.e. an irreducible group having one generator. We derive some of the basic properties of these codes such as the cardinality and the minimum distance.Comment: in Proceedings of The Seventh International Workshop on Coding and Cryptography 2011 April 11-15 2011, Paris, Franc
    • …
    corecore