220 research outputs found

    Electromechanical Dynamics of High Photovoltaic Power Grids

    Get PDF
    This dissertation study focuses on the impact of high PV penetration on power grid electromechanical dynamics. Several major aspects of power grid electromechanical dynamics are studied under high PV penetration, including frequency response and control, inter-area oscillations, transient rotor angle stability and electromechanical wave propagation.To obtain dynamic models that can reasonably represent future power systems, Chapter One studies the co-optimization of generation and transmission with large-scale wind and solar. The stochastic nature of renewables is considered in the formulation of mixed-integer programming model. Chapter Two presents the development procedures of high PV model and investigates the impact of high PV penetration on frequency responses. Chapter Three studies the impact of PV penetration on inter-area oscillations of the U.S. Eastern Interconnection system. Chapter Four presents the impacts of high PV on other electromechanical dynamic issues, including transient rotor angle stability and electromechanical wave propagation. Chapter Five investigates the frequency response enhancement by conventional resources. Chapter Six explores system frequency response improvement through real power control of wind and PV. For improving situation awareness and frequency control, Chapter Seven studies disturbance location determination based on electromechanical wave propagation. In addition, a new method is developed to generate the electromechanical wave propagation speed map, which is useful to detect system inertia distribution change. Chapter Eight provides a review on power grid data architectures for monitoring and controlling power grids. Challenges and essential elements of data architecture are analyzed to identify various requirements for operating high-renewable power grids and a conceptual data architecture is proposed. Conclusions of this dissertation study are given in Chapter Nine

    Computationalcost Reduction of Robust Controllers Foractive Magnetic Bearing Systems

    Get PDF
    This work developed strategies for reducing the computational complexity of implementing robust controllers for active magnetic bearing (AMB) systems and investigated the use of a novel add-on controller for gyroscopic effect compensation to improve achievable performance with robust controllers. AMB systems are multi-input multi-output (MIMO) systems with many interacting mechanisms that needs to fulfill conflicting performance criteria. That is why robust control techniques are a perfect application for AMB systems as they provide systematic methods to address both robustness and performance objectives. However, robust control techniques generally result in high order controllers that require high-end control hardware for implementation. Such controllers are not desirable by industrial AMB vendors since their hardware is based on embedded systems with limited bandwidths. That is why the computational cost is a major obstacle towards industry adaptation of robust controllers. Two novel strategies are developed to reduce the computational complexity of singlerate robust controllers while preserving robust performance. The first strategy identifies a dual-rate configuration of the controller for implementation. The selection of the dualrate configuration uses the worst-case plant analysis and a novel approach that identifies the largest tolerable perturbations to the controller. The second strategy aims to redesign iv the controller by identifying and removing negligible channels in the context of robust performance via the largest tolerable perturbations to the controller. The developed methods are demonstrated both in simulation and experiment using three different AMB systems, where significant computational savings are achieved without degrading the performance. To improve the achievable performance with robust controllers, a novel add-on controller is developed to compensate the gyroscopic effects in flexible rotor-AMB systems via modal feedback control. The compensation allows for relaxing the robustness requirements in the control problem formulation, potentially enabling better performance. The effectiveness of the developed add-on controller is demonstrated experimentally on two AMB systems with different rotor configurations. The effects of the presence of the add-on controller on the performance controller design is investigated for one of the AMB systems. Slight performance improvements are observed at the cost of increased power consumption and increased computational complexity

    Hierarchical Coordinated Fast Frequency Control using Inverter-Based Resources for Next-Generation Power Grids

    Get PDF
    The proportion of inverter-connected renewable energy resources (RES) in the grid is expanding, primarily displacing conventional synchronous generators. This shift significantly impacts the objective of maintaining grid stability and reliable operations. The increased penetration of RESs contributes to the variability of active power supply and a decrease in the rotational inertia of the grid, resulting in faster system dynamics and larger, more frequent frequency events. These emerging challenges could make traditional centralized frequency control strategies ineffective, necessitating the adoption of modern, high-bandwidth control schemes. In this thesis, we propose a novel hierarchical and coordinated real-time frequency control scheme. It leverages advancements in grid monitoring and communication infrastructure to employ local, flexible inverter-based resources for promptly correcting power imbalances in the system. We solve two research problems that, when combined, yield a practical, real-time, next-generation frequency control scheme. This scheme blends localized control with high-bandwidth wide-area coordination. For the first problem, we propose a layered architecture where control, estimation, and optimization tasks are efficiently aggregated and decentralized across the system. This layered control structure, comprising decentralized, distributed, and centralized assets, enables fast, localized control responses to local power imbalances, integrated with wide- area coordination. For the second problem, we propose a data-driven extension to the framework to enhance model flexibility. Achieving high accuracy in system models used for control design is a considerable challenge due to the increasing scale, complexity, and evolving dynamics of the power system. In our proposed approach, we leverage collected data to provide direct data-driven controller designs for fast frequency regulation. The devised scheme ensures swift and effective frequency control for the bulk grid by accurately re-dispatching inverter-based resources (IBRs) to compensate for unmeasured net-load changes. These changes are computed in real-time using frequency and area tie power flow measurements, alongside collected historical data, thus eliminating reliance on proprietary power system models. Validated through detailed simulations under various scenarios such as load increase, generation trips, and three-phase faults, the scheme is practical, provides rapid, localized frequency control, safeguards data privacy, and eliminates the need for system models of the increasingly complex power system
    corecore