13,178 research outputs found

    Inverse Problems in a Bayesian Setting

    Full text link
    In a Bayesian setting, inverse problems and uncertainty quantification (UQ) --- the propagation of uncertainty through a computational (forward) model --- are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. We give a detailed account of this approach via conditional approximation, various approximations, and the construction of filters. Together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update in form of a filter is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and nonlinear Bayesian update in form of a filter on some examples.Comment: arXiv admin note: substantial text overlap with arXiv:1312.504

    Inverse problems and uncertainty quantification

    Get PDF
    In a Bayesian setting, inverse problems and uncertainty quantification (UQ) - the propagation of uncertainty through a computational (forward) model - are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. This is especially the case as together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example of the chaotic Lorenz 84 model, where we experiment with the influence of different observation or measurement operators on the update.Comment: 25 pages, 17 figures. arXiv admin note: text overlap with arXiv:1201.404

    Coarse Brownian Dynamics for Nematic Liquid Crystals: Bifurcation Diagrams via Stochastic Simulation

    Full text link
    We demonstrate how time-integration of stochastic differential equations (i.e. Brownian dynamics simulations) can be combined with continuum numerical bifurcation analysis techniques to analyze the dynamics of liquid crystalline polymers (LCPs). Sidestepping the necessity of obtaining explicit closures, the approach analyzes the (unavailable in closed form) coarse macroscopic equations, estimating the necessary quantities through appropriately initialized, short bursts of Brownian dynamics simulation. Through this approach, both stable and unstable branches of the equilibrium bifurcation diagram are obtained for the Doi model of LCPs and their coarse stability is estimated. Additional macroscopic computational tasks enabled through this approach, such as coarse projective integration and coarse stabilizing controller design, are also demonstrated

    Parameter Estimation via Conditional Expectation --- A Bayesian Inversion

    Get PDF
    When a mathematical or computational model is used to analyse some system, it is usual that some parameters resp.\ functions or fields in the model are not known, and hence uncertain. These parametric quantities are then identified by actual observations of the response of the real system. In a probabilistic setting, Bayes's theory is the proper mathematical background for this identification process. The possibility of being able to compute a conditional expectation turns out to be crucial for this purpose. We show how this theoretical background can be used in an actual numerical procedure, and shortly discuss various numerical approximations

    Stable Nonlinear Identification From Noisy Repeated Experiments via Convex Optimization

    Get PDF
    This paper introduces new techniques for using convex optimization to fit input-output data to a class of stable nonlinear dynamical models. We present an algorithm that guarantees consistent estimates of models in this class when a small set of repeated experiments with suitably independent measurement noise is available. Stability of the estimated models is guaranteed without any assumptions on the input-output data. We first present a convex optimization scheme for identifying stable state-space models from empirical moments. Next, we provide a method for using repeated experiments to remove the effect of noise on these moment and model estimates. The technique is demonstrated on a simple simulated example

    Maximum Entropy Vector Kernels for MIMO system identification

    Full text link
    Recent contributions have framed linear system identification as a nonparametric regularized inverse problem. Relying on 2\ell_2-type regularization which accounts for the stability and smoothness of the impulse response to be estimated, these approaches have been shown to be competitive w.r.t classical parametric methods. In this paper, adopting Maximum Entropy arguments, we derive a new 2\ell_2 penalty deriving from a vector-valued kernel; to do so we exploit the structure of the Hankel matrix, thus controlling at the same time complexity, measured by the McMillan degree, stability and smoothness of the identified models. As a special case we recover the nuclear norm penalty on the squared block Hankel matrix. In contrast with previous literature on reweighted nuclear norm penalties, our kernel is described by a small number of hyper-parameters, which are iteratively updated through marginal likelihood maximization; constraining the structure of the kernel acts as a (hyper)regularizer which helps controlling the effective degrees of freedom of our estimator. To optimize the marginal likelihood we adapt a Scaled Gradient Projection (SGP) algorithm which is proved to be significantly computationally cheaper than other first and second order off-the-shelf optimization methods. The paper also contains an extensive comparison with many state-of-the-art methods on several Monte-Carlo studies, which confirms the effectiveness of our procedure
    corecore