7,544 research outputs found

    Fujiwhara interaction of tropical cyclone scale vortices using a weighted residual collocation method

    Full text link
    The fundamental interaction between tropical cyclones was investigated through a series of water tank experiements by Fujiwhara [20, 21, 22]. However, a complete understanding of tropical cyclones remains an open research challenge although there have been numerous investigations through measurments with aircrafts/satellites, as well as with numerical simulations. This article presents a computational model for simulating the interaction between cyclones. The proposed numerical method is presented briefly, where the time integration is performed by projecting the discrete system onto a Krylov subspace. The method filters the large scale fluid dynamics using a multiresolution approximation, and the unresolved dynamics is modeled with a Smagorinsky type subgrid scale parameterization scheme. Numerical experiments with Fujiwhara interactions are considered to verify modeling accuracy. An excellent agreement between the present simulation and a reference simulation at Re = 5000 has been demonstrated. At Re = 37440, the kinetic energy of cyclones is seen consolidated into larger scales with concurrent enstrophy cascade, suggesting a steady increase of energy containing scales, a phenomena that is typical in two-dimensional turbulence theory. The primary results of this article suggest a novel avenue for addressing some of the computational challenges of mesoscale atmospheric circulations.Comment: 24 pages, 11 figures, submitte

    Projection-free approximate balanced truncation of large unstable systems

    Full text link
    In this article, we show that the projection-free, snapshot-based, balanced truncation method can be applied directly to unstable systems. We prove that even for unstable systems, the unmodified balanced proper orthogonal decomposition algorithm theoretically yields a converged transformation that balances the Gramians (including the unstable subspace). We then apply the method to a spatially developing unstable system and show that it results in reduced-order models of similar quality to the ones obtained with existing methods. Due to the unbounded growth of unstable modes, a practical restriction on the final impulse response simulation time appears, which can be adjusted depending on the desired order of the reduced-order model. Recommendations are given to further reduce the cost of the method if the system is large and to improve the performance of the method if it does not yield acceptable results in its unmodified form. Finally, the method is applied to the linearized flow around a cylinder at Re = 100 to show that it actually is able to accurately reproduce impulse responses for more realistic unstable large-scale systems in practice. The well-established approximate balanced truncation numerical framework can therefore be safely applied to unstable systems without any modifications. Additionally, balanced reduced-order models can readily be obtained even for large systems, where the computational cost of existing methods is prohibitive

    Multiscale modelling couples patches of two-layer thin fluid flow

    Full text link
    The multiscale gap-tooth scheme uses a given microscale simulator of complicated physical processes to enable macroscale simulations by computing only only small sparse patches. This article develops the gap-tooth scheme to the case of nonlinear microscale simulations of thin fluid flow. The microscale simulator is derived by artificially assuming the fluid film flow having two artificial layers but no distinguishing physical feature. Centre manifold theory assures that there exists a slow manifold in the two-layer fluid film flow. Eigenvalue analysis confirms the stability of the microscale simulator. This article uses the gap-tooth scheme to simulate the two-layer fluid film flow. Coupling conditions are developed by approximating the values at the edges of patches by neighbouring macroscale values. Numerical eigenvalue analysis suggests that the gap-tooth scheme with the developed two-layer microscale simulator empowers feasible computation of large scale simulations of fluid film flows. We also implement numerical simulations of the fluid film flow by the gap-tooth scheme. Comparison between a gap-tooth simulation and a microscale simulation over the whole domain demonstrates that the gap-tooth scheme feasibly computes fluid film flow dynamics with computational savings.Comment: 8 figures and 1 tabl

    Projection-free approximate balanced truncation of large unstable systems

    Get PDF
    In this article, we show that the projection-free, snapshot-based, balanced truncation method can be applied directly to unstable systems. We prove that even for unstable systems, the unmodified balanced proper orthogonal decomposition algorithm theoretically yields a converged transformation that balances the Gramians (including the unstable subspace). We then apply the method to a spatially developing unstable system and show that it results in reduced-order models of similar quality to the ones obtained with existing methods. Due to the unbounded growth of unstable modes, a practical restriction on the final impulse response simulation time appears, which can be adjusted depending on the desired order of the reduced-order model. Recommendations are given to further reduce the cost of the method if the system is large and to improve the performance of the method if it does not yield acceptable results in its unmodified form. Finally, the method is applied to the linearized flow around a cylinder at Re = 100 to show that it actually is able to accurately reproduce impulse responses for more realistic unstable large-scale systems in practice. The well-established approximate balanced truncation numerical framework therefore can be safely applied to unstable systems without any modifications. Additionally, balanced reduced-order models can readily be obtained even for large systems, where the computational cost of existing methods is prohibitive

    A note on robust preconditioners for monolithic fluid-structure interaction systems of finite element equations

    Full text link
    In this note, we consider preconditioned Krylov subspace methods for discrete fluid-structure interaction problems with a nonlinear hyperelastic material model and covering a large range of flows, e.g, water, blood, and air with highly varying density. Based on the complete LDULDU factorization of the coupled system matrix, the preconditioner is constructed in form of L^D^U^\hat{L}\hat{D}\hat{U}, where L^\hat{L}, D^\hat{D} and U^\hat{U} are proper approximations to LL, DD and UU, respectively. The inverse of the corresponding Schur complement is approximated by applying one cycle of a special class of algebraic multigrid methods to the perturbed fluid sub-problem, that is obtained by modifying corresponding entries in the original fluid matrix with an explicitly constructed approximation of the exact perturbation coming from the sparse matrix-matrix multiplications

    Modeling of Transitional Channel Flow Using Balanced Proper Orthogonal Decomposition

    Full text link
    We study reduced-order models of three-dimensional perturbations in linearized channel flow using balanced proper orthogonal decomposition (BPOD). The models are obtained from three-dimensional simulations in physical space as opposed to the traditional single-wavenumber approach, and are therefore better able to capture the effects of localized disturbances or localized actuators. In order to assess the performance of the models, we consider the impulse response and frequency response, and variation of the Reynolds number as a model parameter. We show that the BPOD procedure yields models that capture the transient growth well at a low order, whereas standard POD does not capture the growth unless a considerably larger number of modes is included, and even then can be inaccurate. In the case of a localized actuator, we show that POD modes which are not energetically significant can be very important for capturing the energy growth. In addition, a comparison of the subspaces resulting from the two methods suggests that the use of a non-orthogonal projection with adjoint modes is most likely the main reason for the superior performance of BPOD. We also demonstrate that for single-wavenumber perturbations, low-order BPOD models reproduce the dominant eigenvalues of the full system better than POD models of the same order. These features indicate that the simple, yet accurate BPOD models are a good candidate for developing model-based controllers for channel flow.Comment: 35 pages, 20 figure

    An integrated data-driven computational pipeline with model order reduction for industrial and applied mathematics

    Full text link
    In this work we present an integrated computational pipeline involving several model order reduction techniques for industrial and applied mathematics, as emerging technology for product and/or process design procedures. Its data-driven nature and its modularity allow an easy integration into existing pipelines. We describe a complete optimization framework with automated geometrical parameterization, reduction of the dimension of the parameter space, and non-intrusive model order reduction such as dynamic mode decomposition and proper orthogonal decomposition with interpolation. Moreover several industrial examples are illustrated

    An Image-Based Fluid Surface Pattern Model

    Full text link
    This work aims at generating a model of the ocean surface and its dynamics from one or more video cameras. The idea is to model wave patterns from video as a first step towards a larger system of photogrammetric monitoring of marine conditions for use in offshore oil drilling platforms. The first part of the proposed approach consists in reducing the dimensionality of sensor data made up of the many pixels of each frame of the input video streams. This enables finding a concise number of most relevant parameters to model the temporal dataset, yielding an efficient data-driven model of the evolution of the observed surface. The second part proposes stochastic modeling to better capture the patterns embedded in the data. One can then draw samples from the final model, which are expected to simulate the behavior of previously observed flow, in order to determine conditions that match new observations. In this paper we focus on proposing and discussing the overall approach and on comparing two different techniques for dimensionality reduction in the first stage: principal component analysis and diffusion maps. Work is underway on the second stage of constructing better stochastic models of fluid surface dynamics as proposed here.Comment: a reduced version in Portuguese appears in proceedings of the XVI EMC - Computational Modeling Meeting (Encontro de Modelagem Computacional), 201

    A probabilistic decomposition-synthesis method for the quantification of rare events due to internal instabilities

    Full text link
    We consider the problem of probabilistic quantification of dynamical systems that have heavy-tailed characteristics. These heavy-tailed features are associated with rare transient responses due to the occurrence of internal instabilities. Here we develop a computational method, a probabilistic decomposition-synthesis technique, that takes into account the nature of internal instabilities to inexpensively determine the non-Gaussian probability density function for any arbitrary quantity of interest. Our approach relies on the decomposition of the statistics into a `non-extreme core', typically Gaussian, and a heavy-tailed component. This decomposition is in full correspondence with a partition of the phase space into a `stable' region where we have no internal instabilities, and a region where non-linear instabilities lead to rare transitions with high probability. We quantify the statistics in the stable region using a Gaussian approximation approach, while the non-Gaussian distributions associated with the intermittently unstable regions of the phase space are inexpensively computed through order-reduction methods that take into account the strongly nonlinear character of the dynamics. The probabilistic information in the two domains is analytically synthesized through a total probability argument. The proposed approach allows for the accurate quantification of non-Gaussian tails at more than 10 standard deviations, at a fraction of the cost associated with the direct Monte-Carlo simulations. We demonstrate the probabilistic decomposition-synthesis method for rare events for two dynamical systems exhibiting extreme events: a two-degree-of-freedom system of nonlinearly coupled oscillators, and in a nonlinear envelope equation characterizing the propagation of unidirectional water waves

    On matrix-free computation of 2D unstable manifolds

    Full text link
    Recently, a flexible and stable algorithm was introduced for the computation of 2D unstable manifolds of periodic solutions to systems of ordinary differential equations. The main idea of this approach is to represent orbits in this manifold as the solutions of an appropriate boundary value problem. The boundary value problem is under determined and a one parameter family of solutions can be found by means of arclength continuation. This family of orbits covers a piece of the manifold. The quality of this covering depends on the way the boundary value problem is discretised, as do the tractability and accuracy of the computation. In this paper, we describe an implementation of the orbit continuation algorithm which relies on multiple shooting and Newton-Krylov continuation. We show that the number of time integrations necessary for each continuation step scales only with the number of shooting intervals but not with the number of degrees of freedom of the dynamical system. The number of shooting intervals is chosen based on linear stability analysis to keep the conditioning of the boundary value problem in check. We demonstrate our algorithm with two test systems: a low-order model of shear flow and a well-resolved simulation of turbulent plane Couette flow
    • …
    corecore