8 research outputs found

    A Hybrid Instance-based Transfer Learning Method

    Get PDF
    In recent years, supervised machine learning models have demonstrated tremendous success in a variety of application domains. Despite the promising results, these successful models are data hungry and their performance relies heavily on the size of training data. However, in many healthcare applications it is difficult to collect sufficiently large training datasets. Transfer learning can help overcome this issue by transferring the knowledge from readily available datasets (source) to a new dataset (target). In this work, we propose a hybrid instance-based transfer learning method that outperforms a set of baselines including state-of-the-art instance-based transfer learning approaches. Our method uses a probabilistic weighting strategy to fuse information from the source domain to the model learned in the target domain. Our method is generic, applicable to multiple source domains, and robust with respect to negative transfer. We demonstrate the effectiveness of our approach through extensive experiments for two different applications.Comment: Machine Learning for Health (ML4H) Workshop at NeurIPS 2018 arXiv:cs/010120

    Generative Interpretation of Medical Images

    Get PDF

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications (MAVEBA) came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the neonate to the adult and elderly. Over the years the initial issues have grown and spread also in other aspects of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years always in Firenze, Italy

    Characterising pattern asymmetry in pigmented skin lesions

    Get PDF
    Abstract. In clinical diagnosis of pigmented skin lesions asymmetric pigmentation is often indicative of melanoma. This paper describes a method and measures for characterizing lesion symmetry. The estimate of mirror symmetry is computed first for a number of axes at different degrees of rotation with respect to the lesion centre. The statistics of these estimates are the used to assess the overall symmetry. The method is applied to three different lesion representations showing the overall pigmentation, the pigmentation pattern, and the pattern of dermal melanin. The best measure is a 100% sensitive and 96% specific indicator of melanoma on a test set of 33 lesions, with a separate training set consisting of 66 lesions
    corecore