12,445 research outputs found

    Subspace Clustering with Active Learning

    Get PDF
    Subspace clustering is a growing field of unsupervised learning that has gained much popularity in the computer vision community. Applications can be found in areas such as motion segmentation and face clustering. It assumes that data originate from a union of subspaces, and clusters the data depending on the corresponding subspace. In practice, it is reasonable to assume that a limited amount of labels can be obtained, potentially at a cost. Therefore, algorithms that can effectively and efficiently incorporate this information to improve the clustering model are desirable. In this paper, we propose an active learning framework for subspace clustering that sequentially queries informative points and updates the subspace model. The query stage of the proposed framework relies on results from the perturbation theory of principal component analysis, to identify influential and potentially misclassified points. A constrained subspace clustering algorithm is proposed that monotonically decreases the objective function subject to the constraints imposed by the labelled data. We show that our proposed framework is suitable for subspace clustering algorithms including iterative methods and spectral methods. Experiments on synthetic data sets, motion segmentation data sets, and Yale Faces data sets demonstrate the advantage of our proposed active strategy over state-of-the-art

    Subspace Clustering and Active Learning with Constraints

    Get PDF
    Data representations can often be high-dimensional, whether it is due to the large number of collected / recorded features or due to how the data sources (e.g. images, texts) are processed. It is often the case that the main structure of the data can be summarised well in a lower dimensional subspace or multiple lower dimensional subspaces. Subspace clustering addresses the problem of simultaneously uncovering multiple subspace structures in the data and grouping the data according to their underlying subspace structures. The first contribution of this thesis is the development of a Subspace Clustering with Active Learning (SCAL) framework that is designed for Subspace Clustering. This framework allows clustering performance to improve in an effective and efficient manner over time, with the need to query only a small amount of labelling information. It also has the potential to be applied to more general subspace clustering methods, which has been further explored and developed in our next methodological contribution. The second contribution of this thesis is a unified active learning and constrained clustering framework for spectral-based subspace clustering methods. In this work, we propose a spectral-based subspace clustering methodology named Weighted Sparse Simplex Representation (WSSR). It has been demonstrated to have favourable performance against state-of-the-art spectral-based subspace clustering methods on both synthetic and real data. We also propose a flexible weighting scheme that can incorporate external information into the problem formulation, which leads to a constrained clustering extension of WSSR. We show that it can be applied in conjunction with our previously proposed SCAL strategy when labelling information can be queried sequentially. The third contribution of this thesis is the development of an algebraic subspace clustering methodology – Minimum Angle Clustering (MAC). It is motivated by the application of clustering Amazon products based on their titles when represented using the TF-IDF matrix, which is both sparse and high-dimensional. The proposed methodology is composed of two stages. In the first stage, it identifies a large number of subspaces in the data through the Reduced Row Echelon Form technique. In the second stage, we propose a new subspace proximity measure to construct an affinity matrix for the formed subspaces before spectral clustering is applied to obtain the final cluster labels. The proposed methodology has been shown to enjoy competitive performance against a number of well-established subspace clustering and document clustering techniques on the application of clustering Amazon product names

    Oracle Based Active Set Algorithm for Scalable Elastic Net Subspace Clustering

    Full text link
    State-of-the-art subspace clustering methods are based on expressing each data point as a linear combination of other data points while regularizing the matrix of coefficients with β„“1\ell_1, β„“2\ell_2 or nuclear norms. β„“1\ell_1 regularization is guaranteed to give a subspace-preserving affinity (i.e., there are no connections between points from different subspaces) under broad theoretical conditions, but the clusters may not be connected. β„“2\ell_2 and nuclear norm regularization often improve connectivity, but give a subspace-preserving affinity only for independent subspaces. Mixed β„“1\ell_1, β„“2\ell_2 and nuclear norm regularizations offer a balance between the subspace-preserving and connectedness properties, but this comes at the cost of increased computational complexity. This paper studies the geometry of the elastic net regularizer (a mixture of the β„“1\ell_1 and β„“2\ell_2 norms) and uses it to derive a provably correct and scalable active set method for finding the optimal coefficients. Our geometric analysis also provides a theoretical justification and a geometric interpretation for the balance between the connectedness (due to β„“2\ell_2 regularization) and subspace-preserving (due to β„“1\ell_1 regularization) properties for elastic net subspace clustering. Our experiments show that the proposed active set method not only achieves state-of-the-art clustering performance, but also efficiently handles large-scale datasets.Comment: 15 pages, 6 figures, accepted to CVPR 2016 for oral presentatio

    Neural Collaborative Subspace Clustering

    Full text link
    We introduce the Neural Collaborative Subspace Clustering, a neural model that discovers clusters of data points drawn from a union of low-dimensional subspaces. In contrast to previous attempts, our model runs without the aid of spectral clustering. This makes our algorithm one of the kinds that can gracefully scale to large datasets. At its heart, our neural model benefits from a classifier which determines whether a pair of points lies on the same subspace or not. Essential to our model is the construction of two affinity matrices, one from the classifier and the other from a notion of subspace self-expressiveness, to supervise training in a collaborative scheme. We thoroughly assess and contrast the performance of our model against various state-of-the-art clustering algorithms including deep subspace-based ones.Comment: Accepted to ICML 201

    Multi-View Face Recognition From Single RGBD Models of the Faces

    Get PDF
    This work takes important steps towards solving the following problem of current interest: Assuming that each individual in a population can be modeled by a single frontal RGBD face image, is it possible to carry out face recognition for such a population using multiple 2D images captured from arbitrary viewpoints? Although the general problem as stated above is extremely challenging, it encompasses subproblems that can be addressed today. The subproblems addressed in this work relate to: (1) Generating a large set of viewpoint dependent face images from a single RGBD frontal image for each individual; (2) using hierarchical approaches based on view-partitioned subspaces to represent the training data; and (3) based on these hierarchical approaches, using a weighted voting algorithm to integrate the evidence collected from multiple images of the same face as recorded from different viewpoints. We evaluate our methods on three datasets: a dataset of 10 people that we created and two publicly available datasets which include a total of 48 people. In addition to providing important insights into the nature of this problem, our results show that we are able to successfully recognize faces with accuracies of 95% or higher, outperforming existing state-of-the-art face recognition approaches based on deep convolutional neural networks
    • …
    corecore