36 research outputs found

    About [q]-regularity properties of collections of sets

    Get PDF
    We examine three primal space local Hoelder type regularity properties of finite collections of sets, namely, [q]-semiregularity, [q]-subregularity, and uniform [q]-regularity as well as their quantitative characterizations. Equivalent metric characterizations of the three mentioned regularity properties as well as a sufficient condition of [q]-subregularity in terms of Frechet normals are established. The relationships between [q]-regularity properties of collections of sets and the corresponding regularity properties of set-valued mappings are discussed.Comment: arXiv admin note: substantial text overlap with arXiv:1309.700

    Valadier-like formulas for the supremum function II: The compactly indexed case

    Full text link
    We generalize and improve the original characterization given by Valadier [20, Theorem 1] of the subdifferential of the pointwise supremum of convex functions, involving the subdifferentials of the data functions at nearby points. We remove the continuity assumption made in that work and obtain a general formula for such a subdifferential. In particular, when the supremum is continuous at some point of its domain, but not necessarily at the reference point, we get a simpler version which gives rise to Valadier formula. Our starting result is the characterization given in [10, Theorem 4], which uses the epsilon-subdiferential at the reference point.Comment: 23 page

    Variational Analysis in Semi-Infinite and Infinite Programming, II: Necessary Optimality Conditions

    Get PDF
    This paper concerns applications of advanced techniques of variational analysis and generalized differentiation to problems of semi-infinite and infinite programming with feasible solution sets defined by parameterized systems of infinitely many linear inequalities of the type intensively studied in the preceding development [5] from our viewpoint of robust Lipschitzian stability. We present meaningful interpretations and practical examples of such models. The main results establish necessary optimality conditions for a broad class of semi-infinite and infinite programs, where objectives are generally described by nonsmooth and nonconvex functions on Banach spaces and where infinite constraint inequality systems are indexed by arbitrary sets. The results obtained are new in both smooth and nonsmooth settings of semi-infinite and infinite programming

    Variational Analysis in Semi-Infinite and Infinite Programming, II: Necessary Optimality Conditions

    Get PDF
    This paper concerns applications of advanced techniques of variational analysis and generalized differentiation to problems of semi-infinite and infinite programming with feasible solution sets defined by parameterized systems of infinitely many linear inequalities of the type intensively studied in the preceding development [Cánovas et al., SIAM J. Optim., 20 (2009), pp. 1504–1526] from the viewpoint of robust Lipschitzian stability. The main results establish necessary optimality conditions for broad classes of semi-infinite and infinite programs, where objectives are generally described by nonsmooth and nonconvex functions on Banach spaces and where infinite constraint inequality systems are indexed by arbitrary sets. The results obtained are new in both smooth and nonsmooth settings of semi-infinite and infinite programming. We illustrate our model and results by considering a practically meaningful model of water resource optimization via systems of reservoirs.This research was partially supported by grants MTM2008-06695-C03 (01-02) from MICINN (Spain), ACOMP/2009/047&133, and ACOMP/2010/269 from Generatitat Valenciana (Spain)

    Well-Posedness Properties In Variational Analysis And Its Applications

    Get PDF
    This dissertation focuses on the study and applications of some significant properties in well-posedness and sensitivity analysis, among which the notions of uniform metric regularity , higher-order metric subregularity and its strong subregularity counterpart play an essential role in modern variational analysis. We derived verifiable sufficient conditions and necessary conditions for those notions in terms of appropriate generalized differential as well as geometric constructions of variational analysis. Concrete examples are provided to illustrate the behavior and compare the results. Optimality conditions of parametric variational systems (PVS) under equilibrium constraints are also investigated via the terms of coderivatives. We derived necessary optimality and suboptimality conditions for various problems of constrained optimization and equilibria such as MPECs with amenable/full rank potentials and EPECs with closed preferences in finite-dimensional spaces
    corecore