31,973 research outputs found

    Axiomatic Digital Topology

    Full text link
    The paper presents a new set of axioms of digital topology, which are easily understandable for application developers. They define a class of locally finite (LF) topological spaces. An important property of LF spaces satisfying the axioms is that the neighborhood relation is antisymmetric and transitive. Therefore any connected and non-trivial LF space is isomorphic to an abstract cell complex. The paper demonstrates that in an n-dimensional digital space only those of the (a, b)-adjacencies commonly used in computer imagery have analogs among the LF spaces, in which a and b are different and one of the adjacencies is the "maximal" one, corresponding to 3n\"i1 neighbors. Even these (a, b)-adjacencies have important limitations and drawbacks. The most important one is that they are applicable only to binary images. The way of easily using LF spaces in computer imagery on standard orthogonal grids containing only pixels or voxels and no cells of lower dimensions is suggested

    Enumeration Reducibility in Closure Spaces with Applications to Logic and Algebra

    Full text link
    In many instances in first order logic or computable algebra, classical theorems show that many problems are undecidable for general structures, but become decidable if some rigidity is imposed on the structure. For example, the set of theorems in many finitely axiomatisable theories is nonrecursive, but the set of theorems for any finitely axiomatisable complete theory is recursive. Finitely presented groups might have an nonrecursive word problem, but finitely presented simple groups have a recursive word problem. In this article we introduce a topological framework based on closure spaces to show that many of these proofs can be obtained in a similar setting. We will show in particular that these statements can be generalized to cover arbitrary structures, with no finite or recursive presentation/axiomatization. This generalizes in particular work by Kuznetsov and others. Examples from first order logic and symbolic dynamics will be discussed at length

    Ramsey-type theorems for lines in 3-space

    Full text link
    We prove geometric Ramsey-type statements on collections of lines in 3-space. These statements give guarantees on the size of a clique or an independent set in (hyper)graphs induced by incidence relations between lines, points, and reguli in 3-space. Among other things, we prove that: (1) The intersection graph of n lines in R^3 has a clique or independent set of size Omega(n^{1/3}). (2) Every set of n lines in R^3 has a subset of n^{1/2} lines that are all stabbed by one line, or a subset of Omega((n/log n)^{1/5}) such that no 6-subset is stabbed by one line. (3) Every set of n lines in general position in R^3 has a subset of Omega(n^{2/3}) lines that all lie on a regulus, or a subset of Omega(n^{1/3}) lines such that no 4-subset is contained in a regulus. The proofs of these statements all follow from geometric incidence bounds -- such as the Guth-Katz bound on point-line incidences in R^3 -- combined with Tur\'an-type results on independent sets in sparse graphs and hypergraphs. Although similar Ramsey-type statements can be proved using existing generic algebraic frameworks, the lower bounds we get are much larger than what can be obtained with these methods. The proofs directly yield polynomial-time algorithms for finding subsets of the claimed size.Comment: 18 pages including appendi
    • …
    corecore