3,500 research outputs found

    Subset sum problems with digraph constraints

    Get PDF
    We introduce and study optimization problems which are related to the well-known Subset Sum problem. In each new problem, a node-weighted digraph is given and one has to select a subset of vertices whose total weight does not exceed a given budget. Some additional constraints called digraph constraints and maximality need to be satisfied. The digraph constraint imposes that a node must belong to the solution if at least one of its predecessors is in the solution. An alternative of this constraint says that a node must belong to the solution if all its predecessors are in the solution. The maximality constraint ensures that no superset of a feasible solution is also feasible. The combination of these constraints provides four problems. We study their complexity and present some approximation results according to the type of input digraph, such as directed acyclic graphs and oriented trees

    On the Approximability of Digraph Ordering

    Full text link
    Given an n-vertex digraph D = (V, A) the Max-k-Ordering problem is to compute a labeling :V[k]\ell : V \to [k] maximizing the number of forward edges, i.e. edges (u,v) such that \ell(u) < \ell(v). For different values of k, this reduces to Maximum Acyclic Subgraph (k=n), and Max-Dicut (k=2). This work studies the approximability of Max-k-Ordering and its generalizations, motivated by their applications to job scheduling with soft precedence constraints. We give an LP rounding based 2-approximation algorithm for Max-k-Ordering for any k={2,..., n}, improving on the known 2k/(k-1)-approximation obtained via random assignment. The tightness of this rounding is shown by proving that for any k={2,..., n} and constant ε>0\varepsilon > 0, Max-k-Ordering has an LP integrality gap of 2 - ε\varepsilon for nΩ(1/loglogk)n^{\Omega\left(1/\log\log k\right)} rounds of the Sherali-Adams hierarchy. A further generalization of Max-k-Ordering is the restricted maximum acyclic subgraph problem or RMAS, where each vertex v has a finite set of allowable labels SvZ+S_v \subseteq \mathbb{Z}^+. We prove an LP rounding based 42/(2+1)2.3444\sqrt{2}/(\sqrt{2}+1) \approx 2.344 approximation for it, improving on the 222.8282\sqrt{2} \approx 2.828 approximation recently given by Grandoni et al. (Information Processing Letters, Vol. 115(2), Pages 182-185, 2015). In fact, our approximation algorithm also works for a general version where the objective counts the edges which go forward by at least a positive offset specific to each edge. The minimization formulation of digraph ordering is DAG edge deletion or DED(k), which requires deleting the minimum number of edges from an n-vertex directed acyclic graph (DAG) to remove all paths of length k. We show that both, the LP relaxation and a local ratio approach for DED(k) yield k-approximation for any k[n]k\in [n].Comment: 21 pages, Conference version to appear in ESA 201

    TDMA is Optimal for All-unicast DoF Region of TIM if and only if Topology is Chordal Bipartite

    Get PDF
    The main result of this work is that an orthogonal access scheme such as TDMA achieves the all-unicast degrees of freedom (DoF) region of the topological interference management (TIM) problem if and only if the network topology graph is chordal bipartite, i.e., every cycle that can contain a chord, does contain a chord. The all-unicast DoF region includes the DoF region for any arbitrary choice of a unicast message set, so e.g., the results of Maleki and Jafar on the optimality of orthogonal access for the sum-DoF of one-dimensional convex networks are recovered as a special case. The result is also established for the corresponding topological representation of the index coding problem
    corecore