51 research outputs found

    Flexible Time Series Matching for Clinical and Behavioral Data

    Get PDF
    Time Series data became broadly applied by the research community in the last decades after a massive explosion of its availability. Nonetheless, this rise required an improvement in the existing analysis techniques which, in the medical domain, would help specialists to evaluate their patients condition. One of the key tasks in time series analysis is pattern recognition (segmentation and classification). Traditional methods typically perform subsequence matching, making use of a pattern template and a similarity metric to search for similar sequences throughout time series. However, real-world data is noisy and variable (morphological distortions), making a template-based exact matching an elementary approach. Intending to increase flexibility and generalize the pattern searching tasks across domains, this dissertation proposes two Deep Learning-based frameworks to solve pattern segmentation and anomaly detection problems. Regarding pattern segmentation, a Convolution/Deconvolution Neural Network is proposed, learning to distinguish, point-by-point, desired sub-patterns from background content within a time series. The proposed framework was validated in two use-cases: electrocardiogram (ECG) and inertial sensor-based human activity (IMU) signals. It outperformed two conventional matching techniques, being capable of notably detecting the targeted cycles even in noise-corrupted or extremely distorted signals, without using any reference template nor hand-coded similarity scores. Concerning anomaly detection, the proposed unsupervised framework uses the reconstruction ability of Variational Autoencoders and a local similarity score to identify non-labeled abnormalities. The proposal was validated in two public ECG datasets (MITBIH Arrhythmia and ECG5000), performing cardiac arrhythmia identification. Results indicated competitiveness relative to recent techniques, achieving detection AUC scores of 98.84% (ECG5000) and 93.32% (MIT-BIH Arrhythmia).Dados de sĂ©ries temporais tornaram-se largamente aplicados pela comunidade cientĂ­fica nas Ășltimas decadas apĂłs um aumento massivo da sua disponibilidade. Contudo, este aumento exigiu uma melhoria das atuais tĂ©cnicas de anĂĄlise que, no domĂ­nio clĂ­nico, auxiliaria os especialistas na avaliação da condição dos seus pacientes. Um dos principais tipos de anĂĄlise em sĂ©ries temporais Ă© o reconhecimento de padrĂ”es (segmentação e classificação). MĂ©todos tradicionais assentam, tipicamente, em tĂ©cnicas de correspondĂȘncia em subsequĂȘncias, fazendo uso de um padrĂŁo de referĂȘncia e uma mĂ©trica de similaridade para procurar por subsequĂȘncias similares ao longo de sĂ©ries temporais. Todavia, dados do mundo real sĂŁo ruidosos e variĂĄveis (morfologicamente), tornando uma correspondĂȘncia exata baseada num padrĂŁo de referĂȘncia uma abordagem rudimentar. Pretendendo aumentar a flexibilidade da anĂĄlise de sĂ©ries temporais e generalizar tarefas de procura de padrĂ”es entre domĂ­nios, esta dissertação propĂ”e duas abordagens baseadas em Deep Learning para solucionar problemas de segmentação de padrĂ”es e deteção de anomalias. Acerca da segmentação de padrĂ”es, a rede neuronal de Convolução/Deconvolução proposta aprende a distinguir, ponto a ponto, sub-padrĂ”es pretendidos de conteĂșdo de fundo numa sĂ©rie temporal. O modelo proposto foi validado em dois casos de uso: sinais eletrocardiogrĂĄficos (ECG) e de sensores inerciais em atividade humana (IMU). Este superou duas tĂ©cnicas convencionais, sendo capaz de detetar os ciclos-alvo notavelmente, mesmo em sinais corrompidos por ruĂ­do ou extremamente distorcidos, sem o uso de nenhum padrĂŁo de referĂȘncia nem mĂ©tricas de similaridade codificadas manualmente. A respeito da deteção de anomalias, a tĂ©cnica nĂŁo supervisionada proposta usa a capacidade de reconstrução dos Variational Autoencoders e uma mĂ©trica de similaridade local para identificar anomalias desconhecidas. A proposta foi validada na identificação de arritmias cardĂ­acas em duas bases de dados pĂșblicas de ECG (MIT-BIH Arrhythmia e ECG5000). Os resultados revelam competitividade face a tĂ©cnicas recentes, alcançando mĂ©tricas AUC de deteção de 93.32% (MIT-BIH Arrhythmia) e 98.84% (ECG5000)

    Towards streaming gesture recognition

    Get PDF
    The emergence of low-cost sensors allows more devices to be equipped with various types of sensors. In this way, mobile device such as smartphones or smartwatches now may contain accelerometers, gyroscopes, etc. This offers new possibilities for interacting with the environment and benefits would come to exploit these sensors. As a consequence, the literature on gesture recognition systems that employ such sensors grow considerably. The literature regarding online gesture recognition counts many methods based on Dynamic Time Warping (DTW). However, this method was demonstrated has non-efficient for time series from inertial sensors unit as a lot of noise is present. In this way new methods based on LCSS (Longest Common SubSequence) were introduced. Nevertheless, none of them focus on a class optimization process. In this master thesis, we present and evaluate a new algorithm for online gesture recognition in noisy streams. This technique relies upon the LM-WLCSS (Limited Memory and Warping LCSS) algorithm that has demonstrated its efficiency on gesture recognition. This new method involves a quantization step (via the K-Means clustering algorithm) that transforms new data to a finite set. In this way, each new sample can be compared to several templates (one per class). Gestures are rejected based on a previously trained rejection threshold. Thereafter, an algorithm, called SearchMax, find a local maximum within a sliding window and output whether or not the gesture has been recognized. In order to resolve conflicts that may occur, another classifier (i.e. C4.5) could be completed. As the K-Means clustering algorithm needs to be initialized with the number of clusters to create, we also introduce a straightforward optimization process. Such an operation also optimizes the window size for the SearchMax algorithm. In order to demonstrate the robustness of our algorithm, an experiment has been performed over two different data sets. However, results on tested data sets are only accurate when training data are used as test data. This may be due to the fact that the method is in an overlearning state. L’apparition de nouveaux capteurs Ă  bas prix a permis d’en Ă©quiper dans beaucoup plus d’appareils. En effet, dans les appareils mobiles tels que les tĂ©lĂ©phones et les montres intelligentes nous retrouvons des accĂ©lĂ©romĂštres, gyroscopes, etc. Ces capteurs prĂ©sents dans notre vie quotidienne offrent de toutes nouvelles possibilitĂ©s en matiĂšre d’interaction avec notre environnement et il serait avantageux de les utiliser. Cela a eu pour consĂ©quence une augmentation considĂ©rable du nombre de recherches dans le domaine de reconnaissance de geste basĂ© sur ce type de capteur. La littĂ©rature concernant la reconnaissance de gestes en ligne comptabilise beaucoup de mĂ©thodes qui se basent sur Dynamic Time Warping (DTW). Cependant, il a Ă©tĂ© dĂ©montrĂ© que cette mĂ©thode se rĂ©vĂšle inefficace en ce qui concerne les sĂ©ries temporelles provenant d’une centrale Ă  inertie puisqu’elles contiennent beaucoup de bruit. En ce sens de nouvelles mĂ©thodes basĂ©es sur LCSS (Longest Common SubSequence) sont apparues. NĂ©anmoins, aucune d’entre elles ne s’est focalisĂ©e sur un processus d’optimisation par class. Ce mĂ©moire de maĂźtrise consiste en une prĂ©sentation et une Ă©valuation d’un nouvel algorithme pour la reconnaissance de geste en ligne avec des donnĂ©es bruitĂ©es. Cette technique repose sur l’algorithme LM-WLCSS (Limited Memory and Warping LCSS) qui a d’ores et dĂ©jĂ  dĂ©montrĂ© son efficacitĂ© quant Ă  la reconnaissance de geste. Cette nouvelle mĂ©thode est donc composĂ©e d’une Ă©tape dite de quantification (grĂące Ă  l’algorithme de regroupement K-Means) qui se charge de convertir les nouvelles donnĂ©es entrantes vers un ensemble de donnĂ©es fini. Chaque nouvelle donnĂ©e peut donc ĂȘtre comparĂ©e Ă  plusieurs motifs (un par classe) et un geste est reconnu dĂšs lors que son score dĂ©passe un seuil prĂ©alablement entrainĂ©. Puis, un autre algorithme appelĂ© SearchMax se charge de trouver un maximum local au sein d’une fenĂȘtre glissant afin de prĂ©ciser si oui ou non un geste a Ă©tĂ© reconnu. Cependant des conflits peuvent survenir et en ce sens un autre classifieur (c.-Ă d. C4.5) est chainĂ©. Étant donnĂ© que l’algorithme de regroupement K-Means a besoin d’une valeur pour le nombre de regroupements Ă  faire, nous introduisons Ă©galement une technique simple d’optimisation Ă  ce sujet. Cette partie d’optimisation se charge Ă©galement de trouver la meilleure taille de fenĂȘtre possible pour l’algorithme SearchMax. Afin de dĂ©montrer l’efficacitĂ© et la robustesse de notre algorithme, nous l’avons testĂ© sur deux ensembles de donnĂ©es diffĂ©rents. Cependant, les rĂ©sultats sur les ensembles de donnĂ©es testĂ©es n’étaient bons que lorsque les donnĂ©es d’entrainement Ă©taient utilisĂ©es en tant que donnĂ©es de test. Cela peut ĂȘtre dĂ» au fait que la mĂ©thode est dans un Ă©tat de surapprentissage

    WSN Gait Monitoring for Objective Evaluation of Rehabilitation Process

    Get PDF
    Trabalho apresentado no International Conference on Electronic Measurement and Instruments (ICEMI'2015), Julho 2015, Qingdao, ChinaA survey of wireless sensor network solutions for gait assessment is presented including own developed solution gait assessment based on smart insoles nodes ZigBee compatible characterized by multichannel force measurement and MEMS inertial measurement IMU. The system was developed to measure ground reaction force, acceleration and direction of feet in order to provide information to physiotherapists for an objective evaluation of rehabilitation effectiveness. Based on acquired data from the sensing channels a set of gait feature extraction such as walking speed stride length, swing time are calculated as part of gait analysis. Software for WSN node control, gait feature calculation and primary analysis of rehabilitation effectiveness developed for the physiotherapist was designed and implemented and preliminary tests were carried out for normal and simulated anomalous gait.info:eu-repo/semantics/publishedVersio

    Gait event detection in controlled and real-life situations: repeated measures from healthy subjects

    Get PDF
    A benchmark and time-effective computational method is needed to assess human gait events in real-life walking situations using few sensors to be easily reproducible. This paper fosters a reliable gait event detection system that can operate at diverse gait speeds and on diverse real-life terrains by detecting several gait events in real time. This detection only relies on the foot angular velocity measured by a wearable gyroscope mounted in the foot to facilitate its integration for daily and repeated use. To operate as a benchmark tool, the proposed detection system endows an adaptive computational method by applying a finite-state machine based on heuristic decision rules dependent on adaptive thresholds. Repeated measurements from 11 healthy subjects (28.27 +/- 4.17 years) were acquired in controlled situations through a treadmill at different speeds (from 1.5 to 4.5 km/h) and slopes (from 0% to 10%). This validation also includes heterogeneous gait patterns from nine healthy subjects (27 +/- 7.35 years) monitored at three self-selected paces (from 1 +/- 0.2 to 2 +/- 0.18 m/s) during forward walking on flat, rough, and inclined surfaces and climbing staircases. The proposed method was significantly more accurate (p > 0.9925) and time effective ( 0.9314) in a benchmarking analysis with a state-of-the-art method during 5657 steps. Heel strike was the gait event most accurately detected under controlled (accuracy of 100%) and real-life situations (accuracy > 96.98%). Misdetection was more pronounced in middle mid swing (accuracy > 90.12%). The lower computational load, together with an improved performance, makes this detection system suitable for quantitative benchmarking in the locomotor rehabilitation field.This work has been supported in part by the Fundacao para a Ciencia e Tecnologia (FCT) with the Reference Scholarship under Grant SFRH/BD/108309/2015, by the Reference Project under Grant UID/EEA/04436/2013, and part by the FEDER Funds through the COMPETE 2020-Programa Operacional Competitividade e Internacionalizacao (POCI)-with the Reference Project under Grant POCI-01-0145-FEDER-006941, and in part by Spanish Ministry of Economy and Competitiveness Grant RYC-2014-16613

    Recognition and classification of human activities using wearable sensors

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Graduate School of Engineering and Science of Bilkent University, 2012.Thesis (Master's) -- Bilkent University, 2012.Includes bibliographical references.We address the problem of detecting and classifying human activities using two different types of wearable sensors. In the first part of the thesis, a comparative study on the different techniques of classifying human activities using tag-based radio-frequency (RF) localization is provided. Position data of multiple RF tags worn on the human body are acquired asynchronously and non-uniformly. Curves fitted to the data are re-sampled uniformly and then segmented. The effect of varying the relevant system parameters on the system accuracy is investigated. Various curve-fitting, segmentation, and classification techniques are compared and the combination resulting in the best performance is presented. The classifiers are validated through the use of two different cross-validation methods. For the complete classification problem with 11 classes, the proposed system demonstrates an average classification error of 8.67% and 21.30% for 5-fold and subject-based leave-one-out (L1O) cross validation, respectively. When the number of classes is reduced to five by omitting the transition classes, these errors become 1.12% and 6.52%. The system demonstrates acceptable classification performance despite that tag-based RF localization does not provide very accurate position measurements. In the second part, data acquired from five sensory units worn on the human body, each containing a tri-axial accelerometer, a gyroscope, and a magnetometer, during 19 different human activities are used to calculate inter-subject and interactivity variations in the data with different methods. Absolute, Euclidean, and dynamic time-warping (DTW) distances are used to assess the similarity of the signals. The comparisons are made using time-domain data and feature vectors. Different normalization methods are used and compared. The “best” subject is defined and identified according to his/her average distance to the other subjects.Based on one of the similarity criteria proposed here, an autonomous system that detects and evaluates physical therapy exercises using inertial sensors and magnetometers is developed. An algorithm that detects all the occurrences of one or more template signals (exercise movements) in a long signal (physical therapy session) while allowing some distortion is proposed based on DTW. The algorithm classifies the executions in one of the exercises and evaluates them as correct/incorrect, identifying the error type if there is any. To evaluate the performance of the algorithm in physical therapy, a dataset consisting of one template execution and ten test executions of each of the three execution types of eight exercise movements performed by five subjects is recorded, having totally 120 and 1,200 exercise executions in the training and test sets, respectively, as well as many idle time intervals in the test signals. The proposed algorithm detects 1,125 executions in the whole test set. 8.58% of the executions are missed and 4.91% of the idle intervals are incorrectly detected as an execution. The accuracy is 93.46% for exercise classification and 88.65% for both exercise and execution type classification. The proposed system may be used to both estimate the intensity of the physical therapy session and evaluate the executions to provide feedback to the patient and the specialist.Yurtman, ArasM.S

    An Overview of Smart Shoes in the Internet of Health Things: Gait and Mobility Assessment in Health Promotion and Disease Monitoring

    Get PDF
    New smart technologies and the internet of things increasingly play a key role in healthcare and wellness, contributing to the development of novel healthcare concepts. These technologies enable a comprehensive view of an individual’s movement and mobility, potentially supporting healthy living as well as complementing medical diagnostics and the monitoring of therapeutic outcomes. This overview article specifically addresses smart shoes, which are becoming one such smart technology within the future internet of health things, since the ability to walk defines large aspects of quality of life in a wide range of health and disease conditions. Smart shoes offer the possibility to support prevention, diagnostic work-up, therapeutic decisions, and individual disease monitoring with a continuous assessment of gait and mobility. This overview article provides the technological as well as medical aspects of smart shoes within this rising area of digital health applications, and is designed especially for the novel reader in this specific field. It also stresses the need for closer interdisciplinary interactions between technological and medical experts to bridge the gap between research and practice. Smart shoes can be envisioned to serve as pervasive wearable computing systems that enable innovative solutions and services for the promotion of healthy living and the transformation of health care

    Development of a Wearable Sensor-Based Framework for the Classification and Quantification of High Knee Flexion Exposures in Childcare

    Get PDF
    Repetitive cyclic and prolonged joint loading in high knee flexion postures has been associated with the progression of degenerative knee joint diseases and knee osteoarthritis (OA). Despite this association, high flexion postures, where the knee angle exceeds 120°, are commonly performed within occupational settings. While work related musculoskeletal disorders have been studied across many occupations, the risk of OA development associated with the adoption of high knee flexion postures in childcare workers has until recently been unexplored; and therefore, occupational childcare has not appeared in any systematic reviews seeking to prove a causal relationship between occupational exposures and the risk of knee OA development. Therefore, the overarching goal of this thesis was to explore the adoption of high flexion postures in childcare settings and to develop a means by which these could be measured using non-laboratory-based technologies. The global objectives of this thesis were to (i) identify the postural demands of occupational childcare as they relate to high flexion exposures at the knee, (ii) apply, extend, and validate sensor to segment alignment algorithms through which lower limb flexion-extension kinematics could be measured in multiple high knee flexion postures using inertial measurement units (IMUs), and (iii) develop a machine learning based classification model capable of identifying each childcare-inspired high knee flexion posture. In-line with these global objectives, four independent studies were conducted.   Study I – Characterization of Postures of High Knee Flexion and Lifting Tasks Associated with Occupational Childcare Background: High knee flexion postures, despite their association with increased incidences of osteoarthritis, are frequently adopted in occupational childcare. High flexion exposure thresholds (based on exposure frequency or cumulative daily exposure) that relate to increased incidences of OA have previously been proposed; yet our understanding of how the specific postural requirements of this childcare compare to these thresholds remains limited. Objectives: This study sought to define and quantify high flexion postures typically adopted in childcare to evaluate any increased likelihood of knee osteoarthritis development. Methods: Video data of eighteen childcare workers caring for infant, toddler, and preschool-aged children over a period of approximately 3.25 hours were obtained for this investigation from a larger cohort study conducted across five daycares in Kingston, Ontario, Canada. Each video was segmented to identify the start and end of potential high knee flexion exposures. Each identified posture was quantified by duration and frequency. An analysis of postural adoption by occupational task was subsequently performed to determine which task(s) might pose the greatest risk for cumulative joint trauma. Results: A total of ten postures involving varying degrees of knee flexion were identified, of which 8 involved high knee flexion. Childcare workers caring for children of all ages were found to adopt high knee flexion postures for durations of 1.45±0.15 hours and frequencies of 128.67±21.45 over the 3.25 hour observation period, exceeding proposed thresholds for incidences of knee osteoarthritis development. Structured activities, playing, and feeding tasks were found to demand the greatest adoption of high flexion postures. Conclusions: Based on the findings of this study, it is likely that childcare workers caring for children of all ages exceed cumulative exposure- and frequency-based thresholds associated with increased incidences of knee OA development within a typical working day. Study II – Evaluating the Robustness of Automatic IMU Calibration for Lower Extremity Motion Analysis in High Knee Flexion Postures Background: While inertial measurement units promise an out- of-the-box, minimally intrusive means of objectively measuring body segment kinematics in any setting, in practice their implementation requires complex calculations in order to align each sensor with the coordinate system of the segment to which they are attached. Objectives: This study sought to apply and extend previously proposed alignment algorithms to align inertial sensors with the segments on which they are attached in order to calculate flexion-extension angles for the ankle, knee, and hip during multiple childcare-inspired postures. Methods: The Seel joint axis algorithm and the Constrained Seel Knee Axis (CSKA) algorithm were implemented for the sensor to segment calibration of acceleration and angular velocity data from IMUs mounted on the lower limbs and pelvis, based on a series of calibration movements about each joint. Further, the Iterative Seel spherical axis (ISSA) extension to this implementation was proposed for the calibration of sensors about the ankle and hip. The performance of these algorithms was validated across fifty participants during ten childcare-inspired movements performed by comparing IMU- and gold standard optical-based flexion-extension angle estimates. Results: Strong correlations between the IMU- and optical-based angle estimates were reported for all joints during each high flexion motion with the exception of a moderate correlation reported for the ankle angle estimate during child chair sitting. Mean RMSE between protocols were found to be 6.61° ± 2.96° for the ankle, 7.55° ± 5.82° for the knee, and 14.64° ± 6.73° for the hip. Conclusions: The estimation of joint kinematics through the IMU-based CSKA and ISSA algorithms presents an effective solution for the sensor to segment calibration of inertial sensors, allowing for the calculation of lower limb flexion-extension kinematics in multiple childcare-inspired high knee flexion postures. Study III – A Multi-Dimensional Dynamic Time Warping Distance-Based Framework for the Recognition of High Knee Flexion Postures in Inertial Sensor Data Background: The interpretation of inertial measures as they relate to occupational exposures is non-trivial. In order to relate the continuously collected data to the activities or postures performed by the sensor wearer, pattern recognition and machine learning based algorithms can be applied. One difficulty in applying these techniques to real-world data lies in the temporal and scale variability of human movements, which must be overcome when seeking to classify data in the time-domain. Objectives: The objective of this study was to develop a sensor-based framework for the detection and measurement of isolated childcare-specific postures (identified in Study I). As a secondary objective, the classification accuracy movements performed under loaded and unloaded conditions were compared in order to assess the sensitivity of the developed model to potential postural variabilities accompanying the presence of a load. Methods: IMU-based joint angle estimates for the ankle, knee, and hip were time and scale normalized prior to being input to a multi-dimensional Dynamic Time Warping (DTW) distance-based Nearest Neighbour algorithm for the identification of twelve childcare inspired postures. Fifty participants performed each posture, when possible, under unloaded and loaded conditions. Angle estimates from thirty-five participants were divided into development and testing data, such that 80% of the trials were segmented into movement templates and the remaining 20% were left as continuous movement sequences. These data were then included in the model building and testing phases while the accuracy of the model was validated based on novel data from fifteen participants. Results: Overall accuracies of 82.3% and 55.6% were reached when classifying postures on testing and validation data respectively. When adjusting for the imbalances between classification groups, mean balanced accuracies increased to 86% and 74.6% for testing and validation data respectively. Sensitivity and specificity values revealed the highest rates of misclassifications occurred between flatfoot squatting, heels-up squatting, and stooping. It was also found that the model was not capable of identifying sequences of walking data based on a single step motion template. No significant differences were found between the classification of loaded and unloaded motion trials. Conclusions: A combination of DTW distances calculated between motion templates and continuous movement sequences of lower limb flexion-extension angles was found to be effective in the identification of isolated postures frequently performed in childcare. The developed model was successful at classifying data from participants both included and precluded from the algorithm building dataset and insensitive to postural variability which might be caused by the presence of a load. Study IV – Evaluating the Feasibility of Applying the Developed Multi-Dimensional Dynamic Time Warping Distance-Based Framework to the Measurement and Recognition of High Knee Flexion Postures in a Simulated Childcare Environment Background: While the simulation of high knee flexion postures in isolation (in Study III) provided a basis for the development of a multi-dimensional Dynamic Time Warping based nearest neighbour algorithm for the identification of childcare-inspired postures, it is unlikely that the postures adopted in childcare settings would be performed in isolation. Objectives: This study sought to explore the feasibility of extending the developed classification algorithm to identify and measure postures frequently adopted when performing childcare specific tasks within a simulated childcare environment. Methods: Lower limb inertial motion data was recorded from twelve participants as they interacted with their child during a series of tasks inspired by those identified in Study I as frequently occurring in childcare settings. In order to reduce the error associated with gyroscopic drift over time, joint angles for each trial were calculated over 60 second increments and concatenated across the duration of each trial. Angle estimates from ten participants were time windowed in order to create the inputs for the development and testing of two model designs wherein: (A) the model development data included all templates generated from Study III as well as continuous motion windows here collected, or (B) only the model development data included only windows of continuous motion data. The division of data into the development and testing datasets for each 5-fold cross-validated classification model was performed in one of two ways wherein the data was divided: (a) through stratified randomized partitioning of windows such that 80% were assigned to model development and the remaining 20% were reserved for testing, or (b) by partitioning all windows from a single trial of a single participant for testing while all remaining windows were assigned to the model development dataset. When the classification of continuously collected windows was tested (using division strategy b), a logic-based correction module was introduced to eliminate any erroneous predictions. Each model design (A and B) was developed and tested using both data division strategies (a and b) and subsequently their performance was evaluated based on the classification of all data windows from the two subjects reserved for validation. Results: Classification accuracies of 42.2% and 42.5% were achieved when classifying the testing data separated through stratified random partitioning (division strategy a) using models that included (model A, 159 classes) or excluded (model B, 149 classes) the templates generated from Study III, respectively. This classification accuracy was found to decrease when classifying a test partition which included all windows of a single trial (division strategy b) to 35.4% when using model A (where templates from Study III were included in the model development dataset); however, this same trial was classified with an accuracy of 80.8% when using model B (whose development dataset included only windows of continuous motion data). This accuracy was however found to be highly dependent on the motions performed in a given trial and logic-based corrections were not found to improve classification accuracies. When validating each model by identifying postures performed by novel subjects, classification accuracies of 24.0% and 26.6% were obtained using development data which included (model A) and excluded (model B) templates from Study III, respectively. Across all novel data, the highest classification accuracies were observed when identifying static postures, which is unsurprising given that windows of these postures were most prevalent in the model development datasets. Conclusions: While classification accuracies above those achievable by chance were achieved, the classification models evaluated in this study were incapable of accurately identifying the postures adopted during simulated childcare tasks to a level that could be considered satisfactory to accurately report on the postures assumed in a childcare environment. The success of the classifier was highly dependent on the number of transitions occurring between postures while in high flexion; therefore, more classifier development data is needed to create templates for these novel transition movements. Given the high variability in postural adoption when caring for and interacting with children, additional movement templates based on continuously collected data would be required for the successful identification of postures in occupational settings. Global Conclusions Childcare workers exceed previously reported thresholds for high knee flexion postures based on cumulative exposure and frequency of adoption associated with increased incidences of knee OA development within a typical working day. Inertial measurement units provide a unique means of objectively measuring postures frequently adopted when caring for children which may ultimately permit the quantification of high knee flexion exposures in childcare settings and further study of the relationship between these postures and the risk of OA development in occupational childcare. While the results of this thesis demonstrate that IMU based measures of lower limb kinematics can be used to identify these postures in isolation, further work is required to expand the classification model and enable the identification of such postures from continuously collected data

    Examining sensor-based physical activity recognition and monitoring for healthcare using Internet of Things: A systematic review.

    Get PDF
    Due to importantly beneficial effects on physical and mental health and strong association with many rehabilitation programs, Physical Activity Recognition and Monitoring (PARM) have been considered as a key paradigm for smart healthcare. Traditional methods for PARM focus on controlled environments with the aim of increasing the types of identifiable activity subjects complete and improving recognition accuracy and system robustness by means of novel body-worn sensors or advanced learning algorithms. The emergence of the Internet of Things (IoT) enabling technology is transferring PARM studies to open and connected uncontrolled environments by connecting heterogeneous cost-effective wearable devices and mobile apps. Little is currently known about whether traditional PARM technologies can tackle the new challenges of IoT environments and how to effectively harness and improve these technologies. In an effort to understand the use of IoT technologies in PARM studies, this paper will give a systematic review, critically examining PARM studies from a typical IoT layer-based perspective. It will firstly summarize the state-of-the-art in traditional PARM methodologies as used in the healthcare domain, including sensory, feature extraction and recognition techniques. The paper goes on to identify some new research trends and challenges of PARM studies in the IoT environments, and discusses some key enabling techniques for tackling them. Finally, this paper consider some of the successful case studies in the area and look at the possible future industrial applications of PARM in smart healthcare

    Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders

    Get PDF
    The aging population and the increased prevalence of neurological diseases have raised the issue of gait and balance disorders as a major public concern worldwide. Indeed, gait and balance disorders are responsible for a high healthcare and economic burden on society, thus, requiring new solutions to prevent harmful consequences. Recently, wearable sensors have provided new challenges and opportunities to address this issue through innovative diagnostic and therapeutic strategies. Accordingly, the book “Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders” collects the most up-to-date information about the objective evaluation of gait and balance disorders, by means of wearable biosensors, in patients with various types of neurological diseases, including Parkinson’s disease, multiple sclerosis, stroke, traumatic brain injury, and cerebellar ataxia. By adopting wearable technologies, the sixteen original research articles and reviews included in this book offer an updated overview of the most recent approaches for the objective evaluation of gait and balance disorders
    • 

    corecore