26 research outputs found

    A question of Frohardt on 22-groups, and skew translation quadrangles of even order

    Full text link
    We solve a fundamental question posed in Frohardt's 1988 paper [Fro] on finite 22-groups with Kantor familes, by showing that finite groups with a Kantor family (F,F∗)(\mathcal{F},\mathcal{F}^*) having distinct members A,B∈FA, B \in \mathcal{F} such that A∗∩B∗A^* \cap B^* is a central subgroup of HH and the quotient H/(A∗∩B∗)H/(A^* \cap B^*) is abelian cannot exist if the center of HH has exponent 44 and the members of F\mathcal{F} are elementary abelian. In a similar way, we solve another old problem dating back to the 1970s by showing that finite skew translation quadrangles of even order (t,t)(t,t) are always translation generalized quadrangles.Comment: 10 pages; submitted (February 2018

    Covers of generalized quadrangles

    Get PDF
    We solve a problem posed by Cardinali and Sastry (Elliptic ovoids and their rosettes in a classical generalized quadrangle of even order. Proc. Indian Acad. Sci. Math. Sci. 126 (2016), 591-612) about factorization of 2-covers of finite classical generalized quadrangles (GQs). To that end, we develop a general theory of cover factorization for GQs, and in particular, we study the isomorphism problem for such covers and associated geometries. As a byproduct, we obtain new results about semi-partial geometries coming from theta-covers, and consider related problems

    Generalized quadrangles of orrder (s, s2), I

    Get PDF
    AbstractIn this paper generalized quadrangles of order (s, s2), s > 1, satisfying property (G) at a line, at a pair of points, or at a flag, are studied. Property (G) was introduced by S. E. Payne (Geom. Dedicata32 (1989), 93–118) and is weaker than 3-regularity (see S. E. Payne and J. A. Thas, “Finite Generalized Quadrangles,” Pitman, London, 1984). It was shown by Payne that each generalized quadrangle of order (s2, s), s > 1, arising from a flock of a quadratic cone, has property (G) at its point (∞). In particular translation generalized quadrangles satisfying property (G) are considered here. As an application it is proved that the Roman generalized quadrangles of Payne contain at least s3 + s2 classical subquadrangles Q(4, s). Also, as a by-product, several classes of ovoids of Q(4, s), s odd, are obtained; one of these classes is new. The goal of Part II is the classification of all translation generalized quadrangles satisfying property (G) at some flag ((∞), L)

    Central aspects of skew translation quadrangles, I

    Full text link
    Except for the Hermitian buildings H(4,q2)\mathcal{H}(4,q^2), up to a combination of duality, translation duality or Payne integration, every known finite building of type B2\mathbb{B}_2 satisfies a set of general synthetic properties, usually put together in the term "skew translation generalized quadrangle" (STGQ). In this series of papers, we classify finite skew translation generalized quadrangles. In the first installment of the series, as corollaries of the machinery we develop in the present paper, (a) we obtain the surprising result that any skew translation quadrangle of odd order (s,s)(s,s) is a symplectic quadrangle; (b) we determine all skew translation quadrangles with distinct elation groups (a problem posed by Payne in a less general setting); (c) we develop a structure theory for root-elations of skew translation quadrangles which will also be used in further parts, and which essentially tells us that a very general class of skew translation quadrangles admits the theoretical maximal number of root-elations for each member, and hence all members are "central" (the main property needed to control STGQs, as which will be shown throughout); (d) we solve the Main Parameter Conjecture for a class of STGQs containing the class of the previous item, and which conjecturally coincides with the class of all STGQs.Comment: 66 pages; submitted (December 2013

    Geometrical Constructions of Flock Generalized Quadrangles

    Get PDF
    AbstractWith any flock F of the quadratic cone K of PG(3, q) there corresponds a generalized quadrangle S(F) of order (q2, q). For q odd Knarr gave a pure geometrical construction of S(F) starting from F. Recently, Thas found a geometrical construction of S(F) which works for any q. Here we show how, for q odd, one can derive Knarr's construction from Thas' one. To that end we describe an interesting representation of the point-plane flags of PG(3, q), which can be generalized to any dimension and which can be useful for other purposes. Applying this representation onto Thas' model of S(F), another interesting model of S(F) on a hyperbolic cone in PG(6, q) is obtained. In a final section we show how subquadrangles and ovoids of S(F) can be obtained via the description in PG(6, q)

    Covers of generalized quadrangles

    Get PDF
    We solve a problem posed by Cardinali and Sastry (Elliptic ovoids and their rosettes in a classical generalized quadrangle of even order. Proc. Indian Acad. Sci. Math. Sci. 126 (2016), 591-612) about factorization of 2-covers of finite classical generalized quadrangles (GQs). To that end, we develop a general theory of cover factorization for GQs, and in particular, we study the isomorphism problem for such covers and associated geometries. As a byproduct, we obtain new results about semi-partial geometries coming from theta-covers, and consider related problems

    Geometrical Constructions of Flock Generalized Quadrangles

    Get PDF
    AbstractWith any flock F of the quadratic cone K of PG(3, q) there corresponds a generalized quadrangle S(F) of order (q2, q). For q odd Knarr gave a pure geometrical construction of S(F) starting from F. Recently, Thas found a geometrical construction of S(F) which works for any q. Here we show how, for q odd, one can derive Knarr's construction from Thas' one. To that end we describe an interesting representation of the point-plane flags of PG(3, q), which can be generalized to any dimension and which can be useful for other purposes. Applying this representation onto Thas' model of S(F), another interesting model of S(F) on a hyperbolic cone in PG(6, q) is obtained. In a final section we show how subquadrangles and ovoids of S(F) can be obtained via the description in PG(6, q)

    Central aspects of skew translation quadrangles, 1

    Get PDF
    Modulo a combination of duality, translation duality or Payne integration, every known finite generalized quadrangle except for the Hermitian quadrangles H(4, q2), is an elation generalized quadrangle for which the elation point is a center of symmetry-that is, is a "skew translation generalized quadrangle" (STGQ). In this series of papers, we classify and characterize STGQs. In the first installment of the series, (1) we obtain the rather surprising result that any skew translation quadrangle of finite odd order (s, s) is a symplectic quadrangle; (2) we determine all finite skew translation quadrangles with distinct elation groups (a problem posed by Payne in a less general setting); (3) we develop a structure theory for root elations of skew translation quadrangles which will also be used in further parts, and which essentially tells us that a very general class of skew translation quadrangles admits the theoretical maximal number of root elations for each member, and hence, all members are "central" (the main property needed to control STGQs, as which will be shown throughout); and (4) we show that finite "generic STGQs," a class of STGQs which generalizes the class of the previous item (but does not contain it by definition), have the expected parameters. We conjecture that the classes of (3) and (4) contain all STGQs
    corecore