1,261 research outputs found

    Adaptive and Iterative Multi-Branch MMSE Decision Feedback Detection Algorithms for MIMO Systems

    Full text link
    In this work, decision feedback (DF) detection algorithms based on multiple processing branches for multi-input multi-output (MIMO) spatial multiplexing systems are proposed. The proposed detector employs multiple cancellation branches with receive filters that are obtained from a common matrix inverse and achieves a performance close to the maximum likelihood detector (MLD). Constrained minimum mean-squared error (MMSE) receive filters designed with constraints on the shape and magnitude of the feedback filters for the multi-branch MMSE DF (MB-MMSE-DF) receivers are presented. An adaptive implementation of the proposed MB-MMSE-DF detector is developed along with a recursive least squares-type algorithm for estimating the parameters of the receive filters when the channel is time-varying. A soft-output version of the MB-MMSE-DF detector is also proposed as a component of an iterative detection and decoding receiver structure. A computational complexity analysis shows that the MB-MMSE-DF detector does not require a significant additional complexity over the conventional MMSE-DF detector, whereas a diversity analysis discusses the diversity order achieved by the MB-MMSE-DF detector. Simulation results show that the MB-MMSE-DF detector achieves a performance superior to existing suboptimal detectors and close to the MLD, while requiring significantly lower complexity.Comment: 10 figures, 3 tables; IEEE Transactions on Wireless Communications, 201

    SIC-based detection with list and lattice reduction for MIMO channels.

    Get PDF
    To derive low-complexity multiple-input–multiple-output (MIMO) detectors, we combine two complementary approaches, i.e., lattice reduction (LR) and list within the framework of the successive interference cancellation (SIC)-based detection. It is shown that the performance of the proposed detector, which is called the SIC-based detector with list and LR, can approach that of the maximum-likelihood (ML) detector with a short list length. For example, the signal-to-noise ratio (SNR) loss of the proposed detector, compared with that of the ML detector, is less than 1 dB for a 4 × 4 MIMO system with 16-state quadrature amplitude modulation (QAM) at a bit error rate (BER) of 10^−3 with a list length of 8

    Gaussian approximation based mixture reduction for near optimum detection in MIMO systems

    Get PDF

    Soft MIMO detection through sphere decoding and box optimization

    Full text link
    [EN] Achieving optimal detection performance with low complexity is one of the major challenges, mainly in multiple-input multiple-output (MIMO) detection. This paper presents three low-complexity Soft-Output MIMO detection algorithms that are based mainly on Box Optimization (BO) techniques. The proposed methods provide good performance with low computational cost using continuous constrained optimization techniques. The rst proposed algorithm is a non-optimal Soft-Output detector of reduced complexity. This algorithm has been compared with the Soft-Output Fixed Complexity (SFSD) algorithm, obtaining lower complexity and similar performance. The two remaining algorithms are employed in a turbo receiver, achieving the max-log Maximum a Posteriori (MAP) performance. The two Soft-Input Soft-Output (SISO) algorithms were proposed in a previous work for soft-output MIMO detection. This work presents its extension for iterative decoding. The SISO algorithms presented are developed and compared with the SISO Single Tree Search algorithm (STS), in terms of efficiency and computational cost. The results show that the proposed algorithms are more efficient for high order constellation than the STS algorithm.Simarro, MA.; García Mollá, VM.; Vidal Maciá, AM.; Martínez Zaldívar, FJ.; Gonzalez, A. (2018). Soft MIMO detection through sphere decoding and box optimization. Signal Processing. 145:48-58. https://doi.org/10.1016/j.sigpro.2017.11.010S485814
    corecore