16 research outputs found

    Submodular Minimization Under Congruency Constraints

    Full text link
    Submodular function minimization (SFM) is a fundamental and efficiently solvable problem class in combinatorial optimization with a multitude of applications in various fields. Surprisingly, there is only very little known about constraint types under which SFM remains efficiently solvable. The arguably most relevant non-trivial constraint class for which polynomial SFM algorithms are known are parity constraints, i.e., optimizing only over sets of odd (or even) cardinality. Parity constraints capture classical combinatorial optimization problems like the odd-cut problem, and they are a key tool in a recent technique to efficiently solve integer programs with a constraint matrix whose subdeterminants are bounded by two in absolute value. We show that efficient SFM is possible even for a significantly larger class than parity constraints, by introducing a new approach that combines techniques from Combinatorial Optimization, Combinatorics, and Number Theory. In particular, we can show that efficient SFM is possible over all sets (of any given lattice) of cardinality r mod m, as long as m is a constant prime power. This covers generalizations of the odd-cut problem with open complexity status, and with relevance in the context of integer programming with higher subdeterminants. To obtain our results, we establish a connection between the correctness of a natural algorithm, and the inexistence of set systems with specific combinatorial properties. We introduce a general technique to disprove the existence of such set systems, which allows for obtaining extensions of our results beyond the above-mentioned setting. These extensions settle two open questions raised by Geelen and Kapadia [Combinatorica, 2017] in the context of computing the girth and cogirth of certain types of binary matroids

    Advances on Strictly Δ\Delta-Modular IPs

    Full text link
    There has been significant work recently on integer programs (IPs) min{cx ⁣:Axb,xZn}\min\{c^\top x \colon Ax\leq b,\,x\in \mathbb{Z}^n\} with a constraint marix AA with bounded subdeterminants. This is motivated by a well-known conjecture claiming that, for any constant ΔZ>0\Delta\in \mathbb{Z}_{>0}, Δ\Delta-modular IPs are efficiently solvable, which are IPs where the constraint matrix AZm×nA\in \mathbb{Z}^{m\times n} has full column rank and all n×nn\times n minors of AA are within {Δ,,Δ}\{-\Delta, \dots, \Delta\}. Previous progress on this question, in particular for Δ=2\Delta=2, relies on algorithms that solve an important special case, namely strictly Δ\Delta-modular IPs, which further restrict the n×nn\times n minors of AA to be within {Δ,0,Δ}\{-\Delta, 0, \Delta\}. Even for Δ=2\Delta=2, such problems include well-known combinatorial optimization problems like the minimum odd/even cut problem. The conjecture remains open even for strictly Δ\Delta-modular IPs. Prior advances were restricted to prime Δ\Delta, which allows for employing strong number-theoretic results. In this work, we make first progress beyond the prime case by presenting techniques not relying on such strong number-theoretic prime results. In particular, our approach implies that there is a randomized algorithm to check feasibility of strictly Δ\Delta-modular IPs in strongly polynomial time if Δ4\Delta\leq4

    Congruency-Constrained TU Problems Beyond the Bimodular Case

    Full text link
    A long-standing open question in Integer Programming is whether integer programs with constraint matrices with bounded subdeterminants are efficiently solvable. An important special case thereof are congruency-constrained integer programs $\min\{c^\top x\colon\ Tx\leq b,\ \gamma^\top x\equiv r\pmod{m},\ x\in\mathbb{Z}^n\}withatotallyunimodularconstraintmatrix with a totally unimodular constraint matrix T.Suchproblemshavebeenshowntobepolynomialtimesolvablefor. Such problems have been shown to be polynomial-time solvable for m=2,whichledtoanefficientalgorithmforintegerprogramswithbimodularconstraintmatrices,i.e.,fullrankmatriceswhose, which led to an efficient algorithm for integer programs with bimodular constraint matrices, i.e., full-rank matrices whose n\times nsubdeterminantsareboundedbytwoinabsolutevalue.Whereastheseadvancesheavilyreliedonexistingresultsonwellknowncombinatorialproblemswithparityconstraints,newapproachesareneededbeyondthebimodularcase,i.e.,for subdeterminants are bounded by two in absolute value. Whereas these advances heavily relied on existing results on well-known combinatorial problems with parity constraints, new approaches are needed beyond the bimodular case, i.e., for m>2.Wemakefirstprogressinthisdirectionthroughseveralnewtechniques.Inparticular,weshowhowtoefficientlydecidefeasibilityofcongruencyconstrainedintegerprogramswithatotallyunimodularconstraintmatrixfor. We make first progress in this direction through several new techniques. In particular, we show how to efficiently decide feasibility of congruency-constrained integer programs with a totally unimodular constraint matrix for m=3.Furthermore,forgeneral. Furthermore, for general m$, our techniques also allow for identifying flat directions of infeasible problems, and deducing bounds on the proximity between solutions of the problem and its relaxation

    Combinatorial Optimization

    Get PDF
    Combinatorial Optimization is an active research area that developed from the rich interaction among many mathematical areas, including combinatorics, graph theory, geometry, optimization, probability, theoretical computer science, and many others. It combines algorithmic and complexity analysis with a mature mathematical foundation and it yields both basic research and applications in manifold areas such as, for example, communications, economics, traffic, network design, VLSI, scheduling, production, computational biology, to name just a few. Through strong inner ties to other mathematical fields it has been contributing to and benefiting from areas such as, for example, discrete and convex geometry, convex and nonlinear optimization, algebraic and topological methods, geometry of numbers, matroids and combinatorics, and mathematical programming. Moreover, with respect to applications and algorithmic complexity, Combinatorial Optimization is an essential link between mathematics, computer science and modern applications in data science, economics, and industry

    Computational models for image contour grouping

    Get PDF
    Contours are one dimensional curves which may correspond to meaningful entities such as object boundaries. Accurate contour detection will simplify many vision tasks such as object detection and image recognition. Due to the large variety of image content and contour topology, contours are often detected as edge fragments at first, followed by a second step known as {u0300}{u0300}contour grouping'' to connect them. Due to ambiguities in local image patches, contour grouping is essential for constructing globally coherent contour representation. This thesis aims to group contours so that they are consistent with human perception. We draw inspirations from Gestalt principles, which describe perceptual grouping ability of human vision system. In particular, our work is most relevant to the principles of closure, similarity, and past experiences. The first part of our contribution is a new computational model for contour closure. Most of existing contour grouping methods have focused on pixel-wise detection accuracy and ignored the psychological evidences for topological correctness. This chapter proposes a higher-order CRF model to achieve contour closure in the contour domain. We also propose an efficient inference method which is guaranteed to find integer solutions. Tested on the BSDS benchmark, our method achieves a superior contour grouping performance, comparable precision-recall curves, and more visually pleasant results. Our work makes progresses towards a better computational model of human perceptual grouping. The second part is an energy minimization framework for salient contour detection problem. Region cues such as color/texture homogeneity, and contour cues such as local contrast, are both useful for this task. In order to capture both kinds of cues in a joint energy function, topological consistency between both region and contour labels must be satisfied. Our technique makes use of the topological concept of winding numbers. By using a fast method for winding number computation, we find that a small number of linear constraints are sufficient for label consistency. Our method is instantiated by ratio-based energy functions. Due to cue integration, our method obtains improved results. User interaction can also be incorporated to further improve the results. The third part of our contribution is an efficient category-level image contour detector. The objective is to detect contours which most likely belong to a prescribed category. Our method, which is based on three levels of shape representation and non-parametric Bayesian learning, shows flexibility in learning from either human labeled edge images or unlabelled raw images. In both cases, our experiments obtain better contour detection results than competing methods. In addition, our training process is robust even with a considerable size of training samples. In contrast, state-of-the-art methods require more training samples, and often human interventions are required for new category training. Last but not least, in Chapter 7 we also show how to leverage contour information for symmetry detection. Our method is simple yet effective for detecting the symmetric axes of bilaterally symmetric objects in unsegmented natural scene images. Compared with methods based on feature points, our model can often produce better results for the images containing limited texture

    Recalage déformable a l'aide de graphes de coupes 2D et de volumes 3D

    Get PDF
    Deformable image registration plays a fundamental role in many clinical applications. In this paper we investigate the use of graphical models in the context of a particular type of image registration problem, known as slice-to-volume registration. We introduce a scalable, modular and flexible formulation that can accommodate low-rank and high order terms, that simultaneously selects the plane and estimates the in-plane deformation through a single shot optimization approach. The proposed framework is instantiated into different variants seeking either a compromise between computational efficiency (soft plane selection constraints and approximate definition of the data similarity terms through pair-wise components) or exact definition of the data terms and the constraints on the plane selection. Simulated and real-data in the context of ultrasound and magnetic resonance registration (where both framework instantiations as well as different optimization strategies are considered) demonstrate the potentials of our method.Le recalage d'images déformable est un élément essentiel dans de nombreuses applications cliniques. Dans ce rapport, nous nous intéressons aux modèles graphiques utilisés dans un type de recalage particulier : volume 3D et coupe 2D. Nous établissons un modèle modulaire, flexible et de taille variable qui intègre les potentiels d'ordres supérieurs et résoud simultanément la sélection de plan et l'estimation des transformations intra-plan, en une seule et même optimisation. Le cadre proposé peut être modifié selon plusieurs variantes cherchant soit un compromis entre l'efficacité de calcul (contraintes douces de sélection du plan et calcul approché du terme d'attache aux données par un potentiel à deux nœuds) ou une définition exacte du terme d'attache aux données et des contraintes de la sélection de plan. Nos expériences sur des données simulées et réelles pour des images ultrasons et des IRM (où différentes instanciations et méthodes d'optimisation ont été considérées) prouvent le potentiel de notre méthode

    Lifting Linear Extension Complexity Bounds to the Mixed-Integer Setting

    Full text link
    Mixed-integer mathematical programs are among the most commonly used models for a wide set of problems in Operations Research and related fields. However, there is still very little known about what can be expressed by small mixed-integer programs. In particular, prior to this work, it was open whether some classical problems, like the minimum odd-cut problem, can be expressed by a compact mixed-integer program with few (even constantly many) integer variables. This is in stark contrast to linear formulations, where recent breakthroughs in the field of extended formulations have shown that many polytopes associated to classical combinatorial optimization problems do not even admit approximate extended formulations of sub-exponential size. We provide a general framework for lifting inapproximability results of extended formulations to the setting of mixed-integer extended formulations, and obtain almost tight lower bounds on the number of integer variables needed to describe a variety of classical combinatorial optimization problems. Among the implications we obtain, we show that any mixed-integer extended formulation of sub-exponential size for the matching polytope, cut polytope, traveling salesman polytope or dominant of the odd-cut polytope, needs Ω(n/logn) \Omega(n/\log n) many integer variables, where n n is the number of vertices of the underlying graph. Conversely, the above-mentioned polyhedra admit polynomial-size mixed-integer formulations with only O(n) O(n) or O(nlogn) O(n \log n) (for the traveling salesman polytope) many integer variables. Our results build upon a new decomposition technique that, for any convex set C C , allows for approximating any mixed-integer description of C C by the intersection of C C with the union of a small number of affine subspaces.Comment: A conference version of this paper will be presented at SODA 201

    Recalage/Fusion d'images multimodales à l'aide de graphes d'ordres supérieurs

    Get PDF
    The main objective of this thesis is the exploration of higher order Markov Random Fields for image registration, specifically to encode the knowledge of global transformations, like rigid transformations, into the graph structure. Our main framework applies to 2D-2D or 3D-3D registration and use a hierarchical grid-based Markov Random Field model where the hidden variables are the displacements vectors of the control points of the grid.We first present the construction of a graph that allows to perform linear registration, which means here that we can perform affine registration, rigid registration, or similarity registration with the same graph while changing only one potential. Our framework is thus modular regarding the sought transformation and the metric used. Inference is performed with Dual Decomposition, which allows to handle the higher order hyperedges and which ensures the global optimum of the function is reached if we have an agreement among the slaves. A similar structure is also used to perform 2D-3D registration.Second, we fuse our former graph with another structure able to perform deformable registration. The resulting graph is more complex and another optimisation algorithm, called Alternating Direction Method of Multipliers is needed to obtain a better solution within reasonable time. It is an improvement of Dual Decomposition which speeds up the convergence. This framework is able to solve simultaneously both linear and deformable registration which allows to remove a potential bias created by the standard approach of consecutive registrations.L’objectif principal de cette thèse est l’exploration du recalage d’images à l’aide de champs aléatoires de Markov d’ordres supérieurs, et plus spécifiquement d’intégrer la connaissance de transformations globales comme une transformation rigide, dans la structure du graphe. Notre cadre principal s’applique au recalage 2D-2D ou 3D-3D et utilise une approche hiérarchique d’un modèle de champ de Markov dont le graphe est une grille régulière. Les variables cachées sont les vecteurs de déplacements des points de contrôle de la grille.Tout d’abord nous expliciterons la construction du graphe qui permet de recaler des images en cherchant entre elles une transformation affine, rigide, ou une similarité, tout en ne changeant qu’un potentiel sur l’ensemble du graphe, ce qui assure une flexibilité lors du recalage. Le choix de la métrique est également laissée à l’utilisateur et ne modifie pas le fonctionnement de notre algorithme. Nous utilisons l’algorithme d’optimisation de décomposition duale qui permet de gérer les hyper-arêtes du graphe et qui garantit l’obtention du minimum exact de la fonction pourvu que l’on ait un accord entre les esclaves. Un graphe similaire est utilisé pour réaliser du recalage 2D-3D.Ensuite, nous fusionnons le graphe précédent avec un autre graphe construit pour réaliser le recalage déformable. Le graphe résultant de cette fusion est plus complexe et, afin d’obtenir un résultat en un temps raisonnable, nous utilisons une méthode d’optimisation appelée ADMM (Alternating Direction Method of Multipliers) qui a pour but d’accélérer la convergence de la décomposition duale. Nous pouvons alors résoudre simultanément recalage affine et déformable, ce qui nous débarrasse du biais potentiel issu de l’approche classique qui consiste à recaler affinement puis de manière déformable

    Recalage déformable à base de graphes : mise en correspondance coupe-vers-volume et méthodes contextuelles

    Get PDF
    Image registration methods, which aim at aligning two or more images into one coordinate system, are among the oldest and most widely used algorithms in computer vision. Registration methods serve to establish correspondence relationships among images (captured at different times, from different sensors or from different viewpoints) which are not obvious for the human eye. A particular type of registration algorithm, known as graph-based deformable registration methods, has become popular during the last decade given its robustness, scalability, efficiency and theoretical simplicity. The range of problems to which it can be adapted is particularly broad. In this thesis, we propose several extensions to the graph-based deformable registration theory, by exploring new application scenarios and developing novel methodological contributions.Our first contribution is an extension of the graph-based deformable registration framework, dealing with the challenging slice-to-volume registration problem. Slice-to-volume registration aims at registering a 2D image within a 3D volume, i.e. we seek a mapping function which optimally maps a tomographic slice to the 3D coordinate space of a given volume. We introduce a scalable, modular and flexible formulation accommodating low-rank and high order terms, which simultaneously selects the plane and estimates the in-plane deformation through a single shot optimization approach. The proposed framework is instantiated into different variants based on different graph topology, label space definition and energy construction. Simulated and real-data in the context of ultrasound and magnetic resonance registration (where both framework instantiations as well as different optimization strategies are considered) demonstrate the potentials of our method.The other two contributions included in this thesis are related to how semantic information can be encompassed within the registration process (independently of the dimensionality of the images). Currently, most of the methods rely on a single metric function explaining the similarity between the source and target images. We argue that incorporating semantic information to guide the registration process will further improve the accuracy of the results, particularly in the presence of semantic labels making the registration a domain specific problem.We consider a first scenario where we are given a classifier inferring probability maps for different anatomical structures in the input images. Our method seeks to simultaneously register and segment a set of input images, incorporating this information within the energy formulation. The main idea is to use these estimated maps of semantic labels (provided by an arbitrary classifier) as a surrogate for unlabeled data, and combine them with population deformable registration to improve both alignment and segmentation.Our last contribution also aims at incorporating semantic information to the registration process, but in a different scenario. In this case, instead of supposing that we have pre-trained arbitrary classifiers at our disposal, we are given a set of accurate ground truth annotations for a variety of anatomical structures. We present a methodological contribution that aims at learning context specific matching criteria as an aggregation of standard similarity measures from the aforementioned annotated data, using an adapted version of the latent structured support vector machine (LSSVM) framework.Les méthodes de recalage d’images, qui ont pour but l’alignement de deux ou plusieurs images dans un même système de coordonnées, sont parmi les algorithmes les plus anciens et les plus utilisés en vision par ordinateur. Les méthodes de recalage servent à établir des correspondances entre des images (prises à des moments différents, par différents senseurs ou avec différentes perspectives), lesquelles ne sont pas évidentes pour l’œil humain. Un type particulier d’algorithme de recalage, connu comme « les méthodes de recalage déformables à l’aide de modèles graphiques » est devenu de plus en plus populaire ces dernières années, grâce à sa robustesse, sa scalabilité, son efficacité et sa simplicité théorique. La gamme des problèmes auxquels ce type d’algorithme peut être adapté est particulièrement vaste. Dans ce travail de thèse, nous proposons plusieurs extensions à la théorie de recalage déformable à l’aide de modèles graphiques, en explorant de nouvelles applications et en développant des contributions méthodologiques originales.Notre première contribution est une extension du cadre du recalage à l’aide de graphes, en abordant le problème très complexe du recalage d’une tranche avec un volume. Le recalage d’une tranche avec un volume est le recalage 2D dans un volume 3D, comme par exemple le mapping d’une tranche tomographique dans un système de coordonnées 3D d’un volume en particulier. Nos avons proposé une formulation scalable, modulaire et flexible pour accommoder des termes d'ordre élevé et de rang bas, qui peut sélectionner le plan et estimer la déformation dans le plan de manière simultanée par une seule approche d'optimisation. Le cadre proposé est instancié en différentes variantes, basés sur différentes topologies du graph, définitions de l'espace des étiquettes et constructions de l'énergie. Le potentiel de notre méthode a été démontré sur des données réelles ainsi que des données simulées dans le cadre d’une résonance magnétique d’ultrason (où le cadre d’installation et les stratégies d’optimisation ont été considérés).Les deux autres contributions inclues dans ce travail de thèse, sont liées au problème de l’intégration de l’information sémantique dans la procédure de recalage (indépendamment de la dimensionnalité des images). Actuellement, la plupart des méthodes comprennent une seule fonction métrique pour expliquer la similarité entre l’image source et l’image cible. Nous soutenons que l'intégration des informations sémantiques pour guider la procédure de recalage pourra encore améliorer la précision des résultats, en particulier en présence d'étiquettes sémantiques faisant du recalage un problème spécifique adapté à chaque domaine.Nous considérons un premier scénario en proposant un classificateur pour inférer des cartes de probabilité pour les différentes structures anatomiques dans les images d'entrée. Notre méthode vise à recaler et segmenter un ensemble d'images d'entrée simultanément, en intégrant cette information dans la formulation de l'énergie. L'idée principale est d'utiliser ces cartes estimées des étiquettes sémantiques (fournie par un classificateur arbitraire) comme un substitut pour les données non-étiquettées, et les combiner avec le recalage déformable pour améliorer l'alignement ainsi que la segmentation.Notre dernière contribution vise également à intégrer l'information sémantique pour la procédure de recalage, mais dans un scénario différent. Dans ce cas, au lieu de supposer que nous avons des classificateurs arbitraires pré-entraînés à notre disposition, nous considérons un ensemble d’annotations précis (vérité terrain) pour une variété de structures anatomiques. Nous présentons une contribution méthodologique qui vise à l'apprentissage des critères correspondants au contexte spécifique comme une agrégation des mesures de similarité standard à partir des données annotées, en utilisant une adaptation de l’algorithme « Latent Structured Support Vector Machine »
    corecore